--- license: cc-by-4.0 language: - az metrics: - pearsonr base_model: - sentence-transformers/LaBSE pipeline_tag: sentence-similarity widget: - source_sentence: Bu xoşbəxt bir insandır sentences: - Bu xoşbəxt bir itdir - Bu çox xoşbəxt bir insandır - Bu gün günəşli bir gündür example_title: Sentence Similarity tags: - labse --- # TEmA-small This model is a fine-tuned version of the [LaBSE](https://huggingface.co/sentence-transformers/LaBSE), which is specialized for sentence similarity tasks in Azerbaijan texts. It maps sentences and paragraphs to a 768-dimensional dense vector space, useful for tasks like clustering, semantic search, and more. ## Benchmark Results | STSBenchmark | biosses-sts | sickr-sts | sts12-sts | sts13-sts | sts15-sts | sts16-sts | Average Pearson | Model | |--------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------------|------------------------------------| | 0.8253 | 0.7859 | 0.7924 | 0.8444 | 0.7490 | 0.8141 | 0.7600 | 0.7959 | TEmA-small | | 0.7872 | 0.8303 | 0.7801 | 0.7978 | 0.6963 | 0.8052 | 0.7794 | 0.7823 | Cohere/embed-multilingual-v3.0 | | 0.7927 | 0.6672 | 0.7758 | 0.8122 | 0.7312 | 0.7831 | 0.7416 | 0.7577 | BAAI/bge-m3 | | 0.7572 | 0.8139 | 0.7328 | 0.7646 | 0.6318 | 0.7542 | 0.7092 | 0.7377 | intfloat/multilingual-e5-large-instruct | | 0.7400 | 0.8216 | 0.6946 | 0.7098 | 0.6781 | 0.7637 | 0.7222 | 0.7329 | labse_stripped | | 0.7485 | 0.7714 | 0.7271 | 0.7170 | 0.6496 | 0.7570 | 0.7255 | 0.7280 | intfloat/multilingual-e5-large | | 0.7245 | 0.8237 | 0.6839 | 0.6570 | 0.7125 | 0.7612 | 0.7386 | 0.7288 | OpenAI/text-embedding-3-large | | 0.7363 | 0.8148 | 0.7067 | 0.7050 | 0.6535 | 0.7514 | 0.7070 | 0.7250 | sentence-transformers/LaBSE | | 0.7376 | 0.7917 | 0.7190 | 0.7441 | 0.6286 | 0.7461 | 0.7026 | 0.7242 | intfloat/multilingual-e5-small | | 0.7192 | 0.8198 | 0.7160 | 0.7338 | 0.5815 | 0.7318 | 0.6973 | 0.7142 | Cohere/embed-multilingual-light-v3.0 | | 0.6960 | 0.8185 | 0.6950 | 0.6752 | 0.5899 | 0.7186 | 0.6790 | 0.6960 | intfloat/multilingual-e5-base | | 0.5830 | 0.2486 | 0.5921 | 0.5593 | 0.5559 | 0.5404 | 0.5289 | 0.5155 | antoinelouis/colbert-xm | [STS-Benchmark](https://github.com/LocalDoc-Azerbaijan/STS-Benchmark) ## Accuracy Results - **Cosine Distance:** 96.63 - **Manhattan Distance:** 96.52 - **Euclidean Distance:** 96.57 ## Usage ```python from transformers import AutoTokenizer, AutoModel import torch # Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Function to normalize embeddings def normalize_embeddings(embeddings): return embeddings / embeddings.norm(dim=1, keepdim=True) # Sentences we want embeddings for sentences = [ "Bu xoşbəxt bir insandır", "Bu çox xoşbəxt bir insandır", "Bu gün günəşli bir gündür" ] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('LocalDoc/TEmA-small') model = AutoModel.from_pretrained('LocalDoc/TEmA-small') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = normalize_embeddings(sentence_embeddings) # Calculate cosine similarities cosine_similarities = torch.nn.functional.cosine_similarity( sentence_embeddings[0].unsqueeze(0), sentence_embeddings[1:], dim=1 ) print("Cosine Similarities:") for i, score in enumerate(cosine_similarities): print(f"Sentence 1 <-> Sentence {i+2}: {score:.4f}") ```