--- language: - en license: apache-2.0 datasets: - Skylion007/openwebtext - JeanKaddour/minipile pipeline_tag: text-generation inference: parameters: do_sample: true temperature: 0.5 top_p: 0.5 top_k: 50 max_new_tokens: 250 repetition_penalty: 1.176 model-index: - name: TinyMistral-248m results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 22.87 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248m name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 28.02 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248m name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 23.15 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248m name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 42.52 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248m name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 49.8 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248m name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.0 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248m name: Open LLM Leaderboard --- A pre-trained language model, based on the Mistral 7B model, has been scaled down to approximately 248 million parameters. This model has been trained on 7,488,000 examples. This model isn't intended for direct use but for fine-tuning on a downstream task. This model should have a context length of around 32,768 tokens. Safe serialization has been removed due to issues saving model weights. During evaluation on InstructMix, this model achieved an average perplexity score of 6.3. More epochs are planned for this model on different datasets. # [Open LLM Leaderboard Evaluation Results (outdated)](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Locutusque__TinyMistral-248m) | Metric | Value | |-----------------------|---------------------------| | Avg. | 24.18 | | ARC (25-shot) | 20.82 | | HellaSwag (10-shot) | 26.98 | | MMLU (5-shot) | 23.11 | | TruthfulQA (0-shot) | 46.89 | | Winogrande (5-shot) | 50.75 | | GSM8K (5-shot) | 0.0 | | DROP (3-shot) | 0.74 | The purpose of this model is to prove that trillion-scale datasets are not needed to pretrain a language model. As a result of needing small datasets, this model was pretrained on a single GPU (Titan V). # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Locutusque__TinyMistral-248m) | Metric |Value| |---------------------------------|----:| |Avg. |27.73| |AI2 Reasoning Challenge (25-Shot)|22.87| |HellaSwag (10-Shot) |28.02| |MMLU (5-Shot) |23.15| |TruthfulQA (0-shot) |42.52| |Winogrande (5-shot) |49.80| |GSM8k (5-shot) | 0.00|