File size: 2,836 Bytes
8dc95ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
base_model: DeepPavlov/bert-base-bg-cs-pl-ru-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: damage_trigger_effect_2023-12-18_15_20
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# damage_trigger_effect_2023-12-18_15_20

This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5807
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.8588

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1  | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| No log        | 1.0   | 34   | 0.5744          | 0.0       | 0.0    | 0.0 | 0.8099   |
| No log        | 2.0   | 68   | 0.4567          | 0.0       | 0.0    | 0.0 | 0.8393   |
| No log        | 3.0   | 102  | 0.4566          | 0.0       | 0.0    | 0.0 | 0.8474   |
| No log        | 4.0   | 136  | 0.4308          | 0.0       | 0.0    | 0.0 | 0.8585   |
| No log        | 5.0   | 170  | 0.4606          | 0.0       | 0.0    | 0.0 | 0.8422   |
| No log        | 6.0   | 204  | 0.4777          | 0.0       | 0.0    | 0.0 | 0.8510   |
| No log        | 7.0   | 238  | 0.4681          | 0.0       | 0.0    | 0.0 | 0.8569   |
| No log        | 8.0   | 272  | 0.5150          | 0.0       | 0.0    | 0.0 | 0.8523   |
| No log        | 9.0   | 306  | 0.4945          | 0.0       | 0.0    | 0.0 | 0.8650   |
| No log        | 10.0  | 340  | 0.5582          | 0.0       | 0.0    | 0.0 | 0.8533   |
| No log        | 11.0  | 374  | 0.5274          | 0.0       | 0.0    | 0.0 | 0.8591   |
| No log        | 12.0  | 408  | 0.5547          | 0.0       | 0.0    | 0.0 | 0.8595   |
| No log        | 13.0  | 442  | 0.5707          | 0.0       | 0.0    | 0.0 | 0.8598   |
| No log        | 14.0  | 476  | 0.5814          | 0.0       | 0.0    | 0.0 | 0.8549   |
| 0.2474        | 15.0  | 510  | 0.5807          | 0.0       | 0.0    | 0.0 | 0.8588   |


### Framework versions

- Transformers 4.36.1
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0