Wiedervereinigung-7b-dpo
This is a dpo aligned merge of multiple german models scoring 7.1 on the mt-bench-de average. It is a merge of the best german 7B models with 7b parameters as a dare_ties merge. Since the original models based on mistral - three of them on the brilliant german LeoLM/leo-mistral-hessianai-7b - they are reunited in this merged model. Therefore the name, no nationalist ideas involved. To improve result quality they are dpo-trained with a german translation of intel-orca-dpo using our german fork of LLaMA-Factory.
mt-bench-de
Is the merged model good? Well, of course. But it is even better with the help of some dpo tuning.
{
"first_turn": 7.3,
"second_turn": 6.925,
"categories": {
"writing": 8.425,
"roleplay": 8.6,
"reasoning": 5.4,
"math": 4.35,
"coding": 4.3,
"extraction": 7.975,
"stem": 8.5,
"humanities": 9.35
},
"average": 7.1125
}
Wiedervereinigung-7b itself is a LazyMergekit merge of:
- DiscoResearch/DiscoLM_German_7b_v1
- DRXD1000/Phoenix
- VAGOsolutions/SauerkrautLM-7b-v1-mistral
- malteos/hermeo-7b
All the actual heavylifting has been done by the creators of these models.
𧩠Configuration
models:
- model: LeoLM/leo-mistral-hessianai-7b
# No parameters necessary for base model
- model: DiscoResearch/DiscoLM_German_7b_v1
parameters:
density: 0.6
weight: 0.25
- model: DRXD1000/Phoenix
parameters:
density: 0.6
weight: 0.25
- model: VAGOsolutions/SauerkrautLM-7b-v1-mistral
parameters:
density: 0.6
weight: 0.25
- model: malteos/hermeo-7b
parameters:
density: 0.6
weight: 0.25
merge_method: dare_ties
base_model: LeoLM/leo-mistral-hessianai-7b
parameters:
int8_mask: true
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mayflowergmbh/Wiedervereinigung-7b-dpo"
messages = [{"role": "user", "content": "Was ist ein deutsches large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 48