Model trained on 1.000.500 steps
Browse files- .gitattributes +1 -0
- PPO_model_lunarlander.zip +3 -0
- PPO_model_lunarlander/_stable_baselines3_version +1 -0
- PPO_model_lunarlander/data +94 -0
- PPO_model_lunarlander/policy.optimizer.pth +3 -0
- PPO_model_lunarlander/policy.pth +3 -0
- PPO_model_lunarlander/pytorch_variables.pth +3 -0
- PPO_model_lunarlander/system_info.txt +7 -0
- README.md +36 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
PPO_model_lunarlander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2025476a12c01d3efc1b97813f5312921cbef76ece8fa897e06c62090bf4ab94
|
3 |
+
size 144070
|
PPO_model_lunarlander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
PPO_model_lunarlander/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2c826f8d40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2c826f8dd0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2c826f8e60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2c826f8ef0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2c826f8f80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2c826ff050>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2c826ff0e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2c826ff170>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2c826ff200>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2c826ff290>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2c826ff320>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f2c826cc5d0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000500,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1653319481.8607101,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAA9ulsvvbmij8c+Ie+6ncov1qql77AuzM9AAAAAAAAAADqq2u+CqESvUjjIzqKINY4XJp/PmKUXLkAAIA/AACAP8jcs77Qd4c/cuDGvgJQJr8Mqt2+ooHyPAAAAAAAAAAAZgVvPpE9dj/uANM+4O0Wv0wg2j7DWO89AAAAAAAAAACa2zK8ixDlPkxJyTy08am+pismPbrv+bwAAAAAAAAAABpARb2RLzM//TaCvZCH7L5p2lC8iUKxvQAAAAAAAAAAE6c6PjgWwj8lbTY/zG/gvdN8nrw3vjM+AAAAAAAAAABNzCO+w61oPbrgWD4CZwS+AlA5PdvgET0AAAAAAAAAAE3jwz3jvZw/HqYhP5ttL7/Gvhk9c1FdPgAAAAAAAAAAAM1KvYc6Zj/AYtK99fwov+fJizo+lYy9AAAAAAAAAAB6+SK+aRkqvHYpBr2hq127uSerPTmFNjwAAIA/AACAP43ZIj5tpes+EPtTvraCpL7po749RtUWvgAAAAAAAAAAGrlKvekQBLwgoXu7ryyLPGQXZT2bKGm9AACAPwAAgD89OnO+nVd9P5fOFb5c7CG/ZiyEvv016D0AAAAAAAAAAHP/xL0r2a49tO2DPTHQ0b1MBAS7MvyJPAAAAAAAAAAA+lNxPjBHFD+a8ge+pkXfvqRiLz5mxUy+AAAAAAAAAACUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015300349825087434,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVPRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISDMWTSe1cUCUhpRSlIwBbJRL4IwBdJRHQI7i8PH1e0J1fZQoaAZoCWgPQwh63/jaswdwQJSGlFKUaBVL2GgWR0CO4zGuLaVVdX2UKGgGaAloD0MIn1inyveCbUCUhpRSlGgVS+1oFkdAjuPGHpKSPnV9lChoBmgJaA9DCD1IT5EDtHNAlIaUUpRoFUv4aBZHQI7lkbtJFsp1fZQoaAZoCWgPQwhfzmxXqD1wQJSGlFKUaBVNMwFoFkdAjuZjSofjj3V9lChoBmgJaA9DCElIpG38g3NAlIaUUpRoFU0kAWgWR0CO5rOrQw9JdX2UKGgGaAloD0MIfUCgM+lSbkCUhpRSlGgVS9xoFkdAjufd2xIJ7nV9lChoBmgJaA9DCIxK6gS0qm9AlIaUUpRoFU0xAmgWR0CO6U25QP7OdX2UKGgGaAloD0MIEkvK3Sd4cUCUhpRSlGgVS89oFkdAjuldH2AXmHV9lChoBmgJaA9DCH16bMvAg3FAlIaUUpRoFUv/aBZHQI7pdi2Dxsl1fZQoaAZoCWgPQwggfv578LdwQJSGlFKUaBVLzGgWR0CO612LYPGydX2UKGgGaAloD0MIVu9wO7RVb0CUhpRSlGgVS+VoFkdAjutXI2fkFXV9lChoBmgJaA9DCFWEm4zq4XBAlIaUUpRoFUvoaBZHQI7rgGD+R5l1fZQoaAZoCWgPQwiUopV7gbRtQJSGlFKUaBVL/mgWR0CO7F27nPmgdX2UKGgGaAloD0MIkBSRYdUGckCUhpRSlGgVS+hoFkdAjuxTkp7TlXV9lChoBmgJaA9DCM4Y5gStMnNAlIaUUpRoFUvNaBZHQI7syGDcuap1fZQoaAZoCWgPQwg8a7ddKK1yQJSGlFKUaBVLzGgWR0CO7PTZxrBTdX2UKGgGaAloD0MIvTrHgGxTckCUhpRSlGgVTRUBaBZHQI7v216Vt411fZQoaAZoCWgPQwhLd9fZkINHQJSGlFKUaBVLhmgWR0CO77ZK3/gjdX2UKGgGaAloD0MInaG44w1Tc0CUhpRSlGgVS/loFkdAju/FVLi++XV9lChoBmgJaA9DCI4HW+y2pnFAlIaUUpRoFUvoaBZHQI7wpbOeJ551fZQoaAZoCWgPQwh2NuSfmVJvQJSGlFKUaBVL0mgWR0CO8ayX2M86dX2UKGgGaAloD0MI0J1g/3UCUkCUhpRSlGgVS5JoFkdAjvMQ84gieXV9lChoBmgJaA9DCJmEC3mEAXNAlIaUUpRoFU0RAWgWR0CO8zhCtzS1dX2UKGgGaAloD0MIWFcFavF1ckCUhpRSlGgVS/ZoFkdAjvUjdxhlUnV9lChoBmgJaA9DCI6SV+cYZlBAlIaUUpRoFUuRaBZHQI7275O8Cgd1fZQoaAZoCWgPQwgi41Eq4ZBtQJSGlFKUaBVL72gWR0CO9w2KEWZadX2UKGgGaAloD0MIegCL/Ppfb0CUhpRSlGgVS91oFkdAjvc/FirksHV9lChoBmgJaA9DCJlmutcJknBAlIaUUpRoFUvvaBZHQI73QCwKSgZ1fZQoaAZoCWgPQwikGYumMzxxQJSGlFKUaBVL12gWR0CO97GFSKm9dX2UKGgGaAloD0MIP3CVJxC9b0CUhpRSlGgVTWIBaBZHQI74AacZtN11fZQoaAZoCWgPQwgeNSbEHClzQJSGlFKUaBVNPQFoFkdAjvixWtEG7nV9lChoBmgJaA9DCPm84qlH8nBAlIaUUpRoFU0CAWgWR0CO+WReTmnwdX2UKGgGaAloD0MI+dwJ9p+0cUCUhpRSlGgVTSYBaBZHQI75oDTz/ZN1fZQoaAZoCWgPQwjrrYGtktlwQJSGlFKUaBVL4GgWR0CO+rQ7cO9WdX2UKGgGaAloD0MI/3ivWlnWcECUhpRSlGgVS9RoFkdAjvr3rleWwHV9lChoBmgJaA9DCHpsy4Bz1XBAlIaUUpRoFUvraBZHQI77C/oJRfp1fZQoaAZoCWgPQwjSGoNOCGRxQJSGlFKUaBVLz2gWR0CPIwXNTtLMdX2UKGgGaAloD0MIxk/j3jy5cECUhpRSlGgVTQgBaBZHQI8kAyZa3Zx1fZQoaAZoCWgPQwhNEeD0biFyQJSGlFKUaBVLyGgWR0CPJFnFo+OfdX2UKGgGaAloD0MIGGAfnfpScUCUhpRSlGgVS9hoFkdAjyVkEs8PnXV9lChoBmgJaA9DCI55HXHIAXFAlIaUUpRoFUvhaBZHQI8mlSn+AEt1fZQoaAZoCWgPQwjPFDqvMcduQJSGlFKUaBVL72gWR0CPJuJxeb/fdX2UKGgGaAloD0MII2sNpTZuc0CUhpRSlGgVTV0BaBZHQI8nKdSVGCt1fZQoaAZoCWgPQwhXQKGevmJuQJSGlFKUaBVL72gWR0CPJ7557gKndX2UKGgGaAloD0MI48RXOwolcUCUhpRSlGgVTUUBaBZHQI8nsaVD8cd1fZQoaAZoCWgPQwgrMc9KWqNwQJSGlFKUaBVL72gWR0CPKKHqNZNgdX2UKGgGaAloD0MI8uzyrQ/jb0CUhpRSlGgVTR4BaBZHQI8pV/vv0Ad1fZQoaAZoCWgPQwg+srlqHghxQJSGlFKUaBVL2mgWR0CPKg4//vORdX2UKGgGaAloD0MIcvxQaUQCcUCUhpRSlGgVS/toFkdAjynr2QGOdXV9lChoBmgJaA9DCIidKXRerm5AlIaUUpRoFU0BAWgWR0CPKmPEsJ6ZdX2UKGgGaAloD0MImbnA5fEBcUCUhpRSlGgVTQUBaBZHQI8r/bj94u91fZQoaAZoCWgPQwgEcLN4sZZxQJSGlFKUaBVL5WgWR0CPLojOcDr7dX2UKGgGaAloD0MI/RAbLBxjcECUhpRSlGgVS9FoFkdAjy68oQWepXV9lChoBmgJaA9DCCybOSR1H3BAlIaUUpRoFUvmaBZHQI8ve5J9RaZ1fZQoaAZoCWgPQwibx2EwP61zQJSGlFKUaBVL7mgWR0CPMRXV9Wp7dX2UKGgGaAloD0MImbuWkE8FcECUhpRSlGgVS/RoFkdAjzMpLM9r43V9lChoBmgJaA9DCEOPGD03UnBAlIaUUpRoFUvpaBZHQI8zC3w1BMV1fZQoaAZoCWgPQwiFsvD1tW9xQJSGlFKUaBVL5GgWR0CPNMOSW7e3dX2UKGgGaAloD0MIT8k5sYdMckCUhpRSlGgVS/NoFkdAjzTCkO7QLXV9lChoBmgJaA9DCFwclZsoDnJAlIaUUpRoFUvcaBZHQI81LUCq6vt1fZQoaAZoCWgPQwgId2ft9tlxQJSGlFKUaBVNJQFoFkdAjzV7kn1FpnV9lChoBmgJaA9DCDs1lxuMnXFAlIaUUpRoFUvraBZHQI813F98Z1p1fZQoaAZoCWgPQwj1EI3uIN5vQJSGlFKUaBVL6WgWR0CPNkzO5avBdX2UKGgGaAloD0MIzqlkAKhAcUCUhpRSlGgVTSQBaBZHQI82fwZwXIl1fZQoaAZoCWgPQwjmdFlMrApzQJSGlFKUaBVN+QFoFkdAjzgv1DjR2XV9lChoBmgJaA9DCKEt51JcY3BAlIaUUpRoFUvzaBZHQI87fDm8ujB1fZQoaAZoCWgPQwgGg2vuqMlxQJSGlFKUaBVNLQFoFkdAjzvMrEtNBXV9lChoBmgJaA9DCISezarPVUZAlIaUUpRoFUunaBZHQI88MrsjVx11fZQoaAZoCWgPQwirdeJyfHRzQJSGlFKUaBVL+mgWR0CPPCKG+K0ldX2UKGgGaAloD0MISUvl7chDcUCUhpRSlGgVS/BoFkdAjzxl72L5ynV9lChoBmgJaA9DCNWuCWkNe25AlIaUUpRoFUvzaBZHQI9Aeogmqo91fZQoaAZoCWgPQwiRLGACN0hxQJSGlFKUaBVNJAFoFkdAj0FYoRZlnXV9lChoBmgJaA9DCGIVb2Teu3FAlIaUUpRoFUvdaBZHQI9BpRwZOzp1fZQoaAZoCWgPQwhz9zk+WilwQJSGlFKUaBVL8GgWR0CPQgGdI5HVdX2UKGgGaAloD0MIIlUUr7KacECUhpRSlGgVTQ8BaBZHQI9EOFFlTWJ1fZQoaAZoCWgPQwikN9xHbpJwQJSGlFKUaBVNAQFoFkdAj0QoK+i8F3V9lChoBmgJaA9DCDNTWn9L2nBAlIaUUpRoFU0HAWgWR0CPRPngYP5IdX2UKGgGaAloD0MItVII5BJTbkCUhpRSlGgVTQ4BaBZHQI9FjyBkI5Z1fZQoaAZoCWgPQwj20hQBzmxxQJSGlFKUaBVNNQFoFkdAj0XoL5RCQnV9lChoBmgJaA9DCJ7qkJvhnnFAlIaUUpRoFU0DAWgWR0CPRstAcDKYdX2UKGgGaAloD0MIb0ijAmckcUCUhpRSlGgVS9FoFkdAj0dW5xzaK3V9lChoBmgJaA9DCH7JxoPtkXNAlIaUUpRoFUveaBZHQI9IoSSNfgJ1fZQoaAZoCWgPQwgEWU+tvk9wQJSGlFKUaBVNAgFoFkdAj0opE6T4cnV9lChoBmgJaA9DCPZefNGepXFAlIaUUpRoFUv+aBZHQI9KQ5imVJN1fZQoaAZoCWgPQwjVljrIK49wQJSGlFKUaBVNAgFoFkdAj0q1D8cdYHV9lChoBmgJaA9DCHmwxW4fRHBAlIaUUpRoFUvsaBZHQI9NKMir1dx1fZQoaAZoCWgPQwjT3XU2ZDJxQJSGlFKUaBVL9WgWR0CPTm6reZXudX2UKGgGaAloD0MIFW9kHrlhckCUhpRSlGgVS+5oFkdAj06sWGh24nV9lChoBmgJaA9DCJHSbB4Hk3JAlIaUUpRoFUvzaBZHQI9R+8Zk0791fZQoaAZoCWgPQwgYk/5eymRwQJSGlFKUaBVL8GgWR0CPUoYXO4XodX2UKGgGaAloD0MILJyk+SNRcECUhpRSlGgVS+xoFkdAj1LFBQemvXV9lChoBmgJaA9DCAAapUt/y29AlIaUUpRoFU0RAWgWR0CPUxDsMRYjdX2UKGgGaAloD0MIkPY/wBqbckCUhpRSlGgVTUoBaBZHQI9T4S+QEIR1fZQoaAZoCWgPQwhli6TdaBByQJSGlFKUaBVNJwFoFkdAj1RkHdGiH3V9lChoBmgJaA9DCBIwurw5e3FAlIaUUpRoFUv6aBZHQI9UkzoEB8x1fZQoaAZoCWgPQwjcErngTCxyQJSGlFKUaBVL5GgWR0CPVUbMottidX2UKGgGaAloD0MI1bK1vkjYO0CUhpRSlGgVS8VoFkdAj1VD/uLJjnV9lChoBmgJaA9DCCJuTiWDpXJAlIaUUpRoFUvVaBZHQI9V8rkKeCl1fZQoaAZoCWgPQwibqRCPROBwQJSGlFKUaBVNFQFoFkdAj1ZiuuA7P3VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
PPO_model_lunarlander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0dcf8f42e6eac0268c4cf03bc2661ece5ab21ef4a5256b6c9c6649678088288
|
3 |
+
size 84829
|
PPO_model_lunarlander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:381b32063001d097eb396f052b7a044d43e3818d894d4b9b08e6b4c0b4c77a89
|
3 |
+
size 43201
|
PPO_model_lunarlander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO_model_lunarlander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 259.65 +/- 16.92
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2c826f8d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2c826f8dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2c826f8e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2c826f8ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f2c826f8f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f2c826ff050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2c826ff0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2c826ff170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2c826ff200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2c826ff290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2c826ff320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2c826cc5d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000500, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653319481.8607101, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAA9ulsvvbmij8c+Ie+6ncov1qql77AuzM9AAAAAAAAAADqq2u+CqESvUjjIzqKINY4XJp/PmKUXLkAAIA/AACAP8jcs77Qd4c/cuDGvgJQJr8Mqt2+ooHyPAAAAAAAAAAAZgVvPpE9dj/uANM+4O0Wv0wg2j7DWO89AAAAAAAAAACa2zK8ixDlPkxJyTy08am+pismPbrv+bwAAAAAAAAAABpARb2RLzM//TaCvZCH7L5p2lC8iUKxvQAAAAAAAAAAE6c6PjgWwj8lbTY/zG/gvdN8nrw3vjM+AAAAAAAAAABNzCO+w61oPbrgWD4CZwS+AlA5PdvgET0AAAAAAAAAAE3jwz3jvZw/HqYhP5ttL7/Gvhk9c1FdPgAAAAAAAAAAAM1KvYc6Zj/AYtK99fwov+fJizo+lYy9AAAAAAAAAAB6+SK+aRkqvHYpBr2hq127uSerPTmFNjwAAIA/AACAP43ZIj5tpes+EPtTvraCpL7po749RtUWvgAAAAAAAAAAGrlKvekQBLwgoXu7ryyLPGQXZT2bKGm9AACAPwAAgD89OnO+nVd9P5fOFb5c7CG/ZiyEvv016D0AAAAAAAAAAHP/xL0r2a49tO2DPTHQ0b1MBAS7MvyJPAAAAAAAAAAA+lNxPjBHFD+a8ge+pkXfvqRiLz5mxUy+AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015300349825087434, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVPRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISDMWTSe1cUCUhpRSlIwBbJRL4IwBdJRHQI7i8PH1e0J1fZQoaAZoCWgPQwh63/jaswdwQJSGlFKUaBVL2GgWR0CO4zGuLaVVdX2UKGgGaAloD0MIn1inyveCbUCUhpRSlGgVS+1oFkdAjuPGHpKSPnV9lChoBmgJaA9DCD1IT5EDtHNAlIaUUpRoFUv4aBZHQI7lkbtJFsp1fZQoaAZoCWgPQwhfzmxXqD1wQJSGlFKUaBVNMwFoFkdAjuZjSofjj3V9lChoBmgJaA9DCElIpG38g3NAlIaUUpRoFU0kAWgWR0CO5rOrQw9JdX2UKGgGaAloD0MIfUCgM+lSbkCUhpRSlGgVS9xoFkdAjufd2xIJ7nV9lChoBmgJaA9DCIxK6gS0qm9AlIaUUpRoFU0xAmgWR0CO6U25QP7OdX2UKGgGaAloD0MIEkvK3Sd4cUCUhpRSlGgVS89oFkdAjuldH2AXmHV9lChoBmgJaA9DCH16bMvAg3FAlIaUUpRoFUv/aBZHQI7pdi2Dxsl1fZQoaAZoCWgPQwggfv578LdwQJSGlFKUaBVLzGgWR0CO612LYPGydX2UKGgGaAloD0MIVu9wO7RVb0CUhpRSlGgVS+VoFkdAjutXI2fkFXV9lChoBmgJaA9DCFWEm4zq4XBAlIaUUpRoFUvoaBZHQI7rgGD+R5l1fZQoaAZoCWgPQwiUopV7gbRtQJSGlFKUaBVL/mgWR0CO7F27nPmgdX2UKGgGaAloD0MIkBSRYdUGckCUhpRSlGgVS+hoFkdAjuxTkp7TlXV9lChoBmgJaA9DCM4Y5gStMnNAlIaUUpRoFUvNaBZHQI7syGDcuap1fZQoaAZoCWgPQwg8a7ddKK1yQJSGlFKUaBVLzGgWR0CO7PTZxrBTdX2UKGgGaAloD0MIvTrHgGxTckCUhpRSlGgVTRUBaBZHQI7v216Vt411fZQoaAZoCWgPQwhLd9fZkINHQJSGlFKUaBVLhmgWR0CO77ZK3/gjdX2UKGgGaAloD0MInaG44w1Tc0CUhpRSlGgVS/loFkdAju/FVLi++XV9lChoBmgJaA9DCI4HW+y2pnFAlIaUUpRoFUvoaBZHQI7wpbOeJ551fZQoaAZoCWgPQwh2NuSfmVJvQJSGlFKUaBVL0mgWR0CO8ayX2M86dX2UKGgGaAloD0MI0J1g/3UCUkCUhpRSlGgVS5JoFkdAjvMQ84gieXV9lChoBmgJaA9DCJmEC3mEAXNAlIaUUpRoFU0RAWgWR0CO8zhCtzS1dX2UKGgGaAloD0MIWFcFavF1ckCUhpRSlGgVS/ZoFkdAjvUjdxhlUnV9lChoBmgJaA9DCI6SV+cYZlBAlIaUUpRoFUuRaBZHQI7275O8Cgd1fZQoaAZoCWgPQwgi41Eq4ZBtQJSGlFKUaBVL72gWR0CO9w2KEWZadX2UKGgGaAloD0MIegCL/Ppfb0CUhpRSlGgVS91oFkdAjvc/FirksHV9lChoBmgJaA9DCJlmutcJknBAlIaUUpRoFUvvaBZHQI73QCwKSgZ1fZQoaAZoCWgPQwikGYumMzxxQJSGlFKUaBVL12gWR0CO97GFSKm9dX2UKGgGaAloD0MIP3CVJxC9b0CUhpRSlGgVTWIBaBZHQI74AacZtN11fZQoaAZoCWgPQwgeNSbEHClzQJSGlFKUaBVNPQFoFkdAjvixWtEG7nV9lChoBmgJaA9DCPm84qlH8nBAlIaUUpRoFU0CAWgWR0CO+WReTmnwdX2UKGgGaAloD0MI+dwJ9p+0cUCUhpRSlGgVTSYBaBZHQI75oDTz/ZN1fZQoaAZoCWgPQwjrrYGtktlwQJSGlFKUaBVL4GgWR0CO+rQ7cO9WdX2UKGgGaAloD0MI/3ivWlnWcECUhpRSlGgVS9RoFkdAjvr3rleWwHV9lChoBmgJaA9DCHpsy4Bz1XBAlIaUUpRoFUvraBZHQI77C/oJRfp1fZQoaAZoCWgPQwjSGoNOCGRxQJSGlFKUaBVLz2gWR0CPIwXNTtLMdX2UKGgGaAloD0MIxk/j3jy5cECUhpRSlGgVTQgBaBZHQI8kAyZa3Zx1fZQoaAZoCWgPQwhNEeD0biFyQJSGlFKUaBVLyGgWR0CPJFnFo+OfdX2UKGgGaAloD0MIGGAfnfpScUCUhpRSlGgVS9hoFkdAjyVkEs8PnXV9lChoBmgJaA9DCI55HXHIAXFAlIaUUpRoFUvhaBZHQI8mlSn+AEt1fZQoaAZoCWgPQwjPFDqvMcduQJSGlFKUaBVL72gWR0CPJuJxeb/fdX2UKGgGaAloD0MII2sNpTZuc0CUhpRSlGgVTV0BaBZHQI8nKdSVGCt1fZQoaAZoCWgPQwhXQKGevmJuQJSGlFKUaBVL72gWR0CPJ7557gKndX2UKGgGaAloD0MI48RXOwolcUCUhpRSlGgVTUUBaBZHQI8nsaVD8cd1fZQoaAZoCWgPQwgrMc9KWqNwQJSGlFKUaBVL72gWR0CPKKHqNZNgdX2UKGgGaAloD0MI8uzyrQ/jb0CUhpRSlGgVTR4BaBZHQI8pV/vv0Ad1fZQoaAZoCWgPQwg+srlqHghxQJSGlFKUaBVL2mgWR0CPKg4//vORdX2UKGgGaAloD0MIcvxQaUQCcUCUhpRSlGgVS/toFkdAjynr2QGOdXV9lChoBmgJaA9DCIidKXRerm5AlIaUUpRoFU0BAWgWR0CPKmPEsJ6ZdX2UKGgGaAloD0MImbnA5fEBcUCUhpRSlGgVTQUBaBZHQI8r/bj94u91fZQoaAZoCWgPQwgEcLN4sZZxQJSGlFKUaBVL5WgWR0CPLojOcDr7dX2UKGgGaAloD0MI/RAbLBxjcECUhpRSlGgVS9FoFkdAjy68oQWepXV9lChoBmgJaA9DCCybOSR1H3BAlIaUUpRoFUvmaBZHQI8ve5J9RaZ1fZQoaAZoCWgPQwibx2EwP61zQJSGlFKUaBVL7mgWR0CPMRXV9Wp7dX2UKGgGaAloD0MImbuWkE8FcECUhpRSlGgVS/RoFkdAjzMpLM9r43V9lChoBmgJaA9DCEOPGD03UnBAlIaUUpRoFUvpaBZHQI8zC3w1BMV1fZQoaAZoCWgPQwiFsvD1tW9xQJSGlFKUaBVL5GgWR0CPNMOSW7e3dX2UKGgGaAloD0MIT8k5sYdMckCUhpRSlGgVS/NoFkdAjzTCkO7QLXV9lChoBmgJaA9DCFwclZsoDnJAlIaUUpRoFUvcaBZHQI81LUCq6vt1fZQoaAZoCWgPQwgId2ft9tlxQJSGlFKUaBVNJQFoFkdAjzV7kn1FpnV9lChoBmgJaA9DCDs1lxuMnXFAlIaUUpRoFUvraBZHQI813F98Z1p1fZQoaAZoCWgPQwj1EI3uIN5vQJSGlFKUaBVL6WgWR0CPNkzO5avBdX2UKGgGaAloD0MIzqlkAKhAcUCUhpRSlGgVTSQBaBZHQI82fwZwXIl1fZQoaAZoCWgPQwjmdFlMrApzQJSGlFKUaBVN+QFoFkdAjzgv1DjR2XV9lChoBmgJaA9DCKEt51JcY3BAlIaUUpRoFUvzaBZHQI87fDm8ujB1fZQoaAZoCWgPQwgGg2vuqMlxQJSGlFKUaBVNLQFoFkdAjzvMrEtNBXV9lChoBmgJaA9DCISezarPVUZAlIaUUpRoFUunaBZHQI88MrsjVx11fZQoaAZoCWgPQwirdeJyfHRzQJSGlFKUaBVL+mgWR0CPPCKG+K0ldX2UKGgGaAloD0MISUvl7chDcUCUhpRSlGgVS/BoFkdAjzxl72L5ynV9lChoBmgJaA9DCNWuCWkNe25AlIaUUpRoFUvzaBZHQI9Aeogmqo91fZQoaAZoCWgPQwiRLGACN0hxQJSGlFKUaBVNJAFoFkdAj0FYoRZlnXV9lChoBmgJaA9DCGIVb2Teu3FAlIaUUpRoFUvdaBZHQI9BpRwZOzp1fZQoaAZoCWgPQwhz9zk+WilwQJSGlFKUaBVL8GgWR0CPQgGdI5HVdX2UKGgGaAloD0MIIlUUr7KacECUhpRSlGgVTQ8BaBZHQI9EOFFlTWJ1fZQoaAZoCWgPQwikN9xHbpJwQJSGlFKUaBVNAQFoFkdAj0QoK+i8F3V9lChoBmgJaA9DCDNTWn9L2nBAlIaUUpRoFU0HAWgWR0CPRPngYP5IdX2UKGgGaAloD0MItVII5BJTbkCUhpRSlGgVTQ4BaBZHQI9FjyBkI5Z1fZQoaAZoCWgPQwj20hQBzmxxQJSGlFKUaBVNNQFoFkdAj0XoL5RCQnV9lChoBmgJaA9DCJ7qkJvhnnFAlIaUUpRoFU0DAWgWR0CPRstAcDKYdX2UKGgGaAloD0MIb0ijAmckcUCUhpRSlGgVS9FoFkdAj0dW5xzaK3V9lChoBmgJaA9DCH7JxoPtkXNAlIaUUpRoFUveaBZHQI9IoSSNfgJ1fZQoaAZoCWgPQwgEWU+tvk9wQJSGlFKUaBVNAgFoFkdAj0opE6T4cnV9lChoBmgJaA9DCPZefNGepXFAlIaUUpRoFUv+aBZHQI9KQ5imVJN1fZQoaAZoCWgPQwjVljrIK49wQJSGlFKUaBVNAgFoFkdAj0q1D8cdYHV9lChoBmgJaA9DCHmwxW4fRHBAlIaUUpRoFUvsaBZHQI9NKMir1dx1fZQoaAZoCWgPQwjT3XU2ZDJxQJSGlFKUaBVL9WgWR0CPTm6reZXudX2UKGgGaAloD0MIFW9kHrlhckCUhpRSlGgVS+5oFkdAj06sWGh24nV9lChoBmgJaA9DCJHSbB4Hk3JAlIaUUpRoFUvzaBZHQI9R+8Zk0791fZQoaAZoCWgPQwgYk/5eymRwQJSGlFKUaBVL8GgWR0CPUoYXO4XodX2UKGgGaAloD0MILJyk+SNRcECUhpRSlGgVS+xoFkdAj1LFBQemvXV9lChoBmgJaA9DCAAapUt/y29AlIaUUpRoFU0RAWgWR0CPUxDsMRYjdX2UKGgGaAloD0MIkPY/wBqbckCUhpRSlGgVTUoBaBZHQI9T4S+QEIR1fZQoaAZoCWgPQwhli6TdaBByQJSGlFKUaBVNJwFoFkdAj1RkHdGiH3V9lChoBmgJaA9DCBIwurw5e3FAlIaUUpRoFUv6aBZHQI9UkzoEB8x1fZQoaAZoCWgPQwjcErngTCxyQJSGlFKUaBVL5GgWR0CPVUbMottidX2UKGgGaAloD0MI1bK1vkjYO0CUhpRSlGgVS8VoFkdAj1VD/uLJjnV9lChoBmgJaA9DCCJuTiWDpXJAlIaUUpRoFUvVaBZHQI9V8rkKeCl1fZQoaAZoCWgPQwibqRCPROBwQJSGlFKUaBVNFQFoFkdAj1ZiuuA7P3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9a439bbb14a0b03a309631e1f7d2a89620d9f4d17769a0da2356bd8deba92ea
|
3 |
+
size 190001
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 259.6508567671663, "std_reward": 16.92485781638569, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-23T16:20:03.044890"}
|