{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7abf36dc0310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7abf36dc03a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7abf36dc0430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7abf36dc04c0>", "_build": "<function ActorCriticPolicy._build at 0x7abf36dc0550>", "forward": "<function ActorCriticPolicy.forward at 0x7abf36dc05e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7abf36dc0670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7abf36dc0700>", "_predict": "<function ActorCriticPolicy._predict at 0x7abf36dc0790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7abf36dc0820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7abf36dc08b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7abf36dc0940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7abf36f4fc40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711540322695249521, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAABrHJT5jHRQ/Ig/NvSVok74LWzM97iXAvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGh3eSB9TiMAWyUTQ8BjAF0lEdAqNA9DF6zFHV9lChoBkdAc7Z+Jxeb/mgHTTABaAhHQKjRLziCJ411fZQoaAZHQGMASGJvYOFoB03oA2gIR0Co1SCb2Dg7dX2UKGgGR0ASABBAv+OwaAdL6GgIR0Co1ekOqebvdX2UKGgGR0BvfHgvUSZjaAdNPAFoCEdAqNeWnuRcNnV9lChoBkdAbtBrRjSXt2gHTUQBaAhHQKjYng4wRGt1fZQoaAZHQGzj1s1sLv1oB00vAWgIR0Co2Y17pmmMdX2UKGgGR0BwlOTSsr/baAdNUwFoCEdAqNtM5CF9KHV9lChoBkdAcJjFn7Hhj2gHTRsBaAhHQKjcUzTF2mp1fZQoaAZHQHDWg6+36RBoB01FAWgIR0Co3Wi/O+qSdX2UKGgGR0BdXEQXhwVCaAdN6ANoCEdAqOG8h9srNHV9lChoBkdAcvERNh3JP2gHTTQBaAhHQKjkDHNHH3l1fZQoaAZHQHAQ7rPdEb5oB004AWgIR0Co5Q40VJtjdX2UKGgGR0BxuPghr30xaAdNFwFoCEdAqOXvLgXMyXV9lChoBkdAcTQxwAEMb2gHTRkBaAhHQKjm1BfrrxB1fZQoaAZHQHBe+WrwOONoB00aAWgIR0Co6F5/0/W2dX2UKGgGR0BuzCQkona4aAdNLwFoCEdAqOlSQtBfKXV9lChoBkdAbmOnHeaa1GgHTUoBaAhHQKjqYIsRQJp1fZQoaAZHQGzwJhvze41oB00hAWgIR0Co6/KdhAnldX2UKGgGR0ByCfaAWi1zaAdNCQFoCEdAqOzJUHY6GXV9lChoBkdAcJNBWgezU2gHTQYBaAhHQKjtm2gFotd1fZQoaAZHQG74gieNDMNoB00ZAWgIR0Co7n6FuejEdX2UKGgGR0BwyTkn1FpgaAdNMgFoCEdAqPAVTzd1uHV9lChoBkdAcNPhDw6QvGgHTawBaAhHQKjxdiQT2391fZQoaAZHQENF8fFJg9hoB00RAWgIR0Co8lBdld1MdX2UKGgGR0BwXoIt16mgaAdNdAFoCEdAqPQn95yEMHV9lChoBkdAbTuADJU5uWgHTUEBaAhHQKj1LiExqO91fZQoaAZHQHIVGi1y/9JoB00WAWgIR0Co9g8CPp6hdX2UKGgGR0BxH2LIgeRxaAdNFgFoCEdAqPePCbc453V9lChoBkdAb2j8F6iTMmgHTTkBaAhHQKj4u+rU9ZB1fZQoaAZHQHBGX6AOJ+FoB01SAWgIR0Co+hgeRxLkdX2UKGgGR0BujJJEpiI+aAdNPwFoCEdAqPxeJiy6c3V9lChoBkdAcF1HgP3BYWgHTUQBaAhHQKj9ZFfAsTZ1fZQoaAZHQG7W/oJRfnhoB01TAWgIR0Co/nNMGorGdX2UKGgGR0Bu6zIDHOryaAdNIgFoCEdAqP9ZcPe54HV9lChoBkdAR4kzfrKNhmgHTQUBaAhHQKkAzKr7wa11fZQoaAZHQG8h9FWn0kJoB000AWgIR0CpAcmBFuvVdX2UKGgGR0Bx/h4ptrKvaAdNBQFoCEdAqQKZPGhmG3V9lChoBkdAcNN+XqqwQmgHTUcBaAhHQKkESMy8BdV1fZQoaAZHQHGDEHpr1uloB00UAWgIR0CpBSuqebuudX2UKGgGR0Bqmgk3S8aoaAdNkAFoCEdAqQZqbYsd1nV9lChoBkdAcKQGr0aqCGgHTTQBaAhHQKkICE4//vR1fZQoaAZHQHGWowZflZJoB00jAWgIR0CpCO0hmoR7dX2UKGgGR0Bw8jsE7nxKaAdNGAFoCEdAqQnWknCwbHV9lChoBkdAb3kgGKQ7tGgHTRUBaAhHQKkKwAEMb3p1fZQoaAZHQHBE/lIVdopoB00RAWgIR0CpDEupsGgSdX2UKGgGR0A0RN+9alk6aAdL72gIR0CpDQ8uanaWdX2UKGgGR0BshKRfWtlqaAdNMAFoCEdAqQ4H3JxNqXV9lChoBkdAbuGA7xNIsmgHTVsBaAhHQKkPyuvECNl1fZQoaAZHQHJ94tthuwZoB00yAWgIR0CpEQMhouf3dX2UKGgGR0Bxk5loUSIyaAdNEAFoCEdAqRIrkOqeb3V9lChoBkdAcS/cOLBKtmgHTR8BaAhHQKkTdnAZbY91fZQoaAZHQG2sBvrGBFxoB01GAWgIR0CpFWNpM6BAdX2UKGgGR0BvFx24d6syaAdNEQFoCEdAqRZAsVclgXV9lChoBkdAbTuIBzV+Z2gHTQUBaAhHQKkXEQK8cuJ1fZQoaAZHQF/HF98Z1mtoB03oA2gIR0CpGybdBSk1dX2UKGgGR0BvSQvi97F9aAdNNAFoCEdAqRwmRYA80XV9lChoBkdAbOCCZnctXmgHTR0BaAhHQKkdqFHJ9y91fZQoaAZHQG+ysx46fapoB00FAWgIR0CpHoBciW3SdX2UKGgGR0BxQ/zmOlwcaAdNCQFoCEdAqR9V2icoY3V9lChoBkdAbqyvUSZjQWgHTSwBaAhHQKkg9l2/zrh1fZQoaAZHQG0fr9/BnBdoB00cAWgIR0CpIeCSidrgdX2UKGgGR0BlASn5zo2XaAdN6ANoCEdAqSXFOIqLCXV9lChoBkdAcJ1n2qT8pGgHTQgBaAhHQKkmpDtPYWd1fZQoaAZHQHBo4mb9ZRtoB00mAWgIR0CpJ5JkGzKLdX2UKGgGR0Bxl9CtzS1FaAdNKAFoCEdAqSl74tYjjnV9lChoBkdAbSiIyj59E2gHTQoBaAhHQKkqh2SMcZN1fZQoaAZHQHAbH6dlNDdoB007AWgIR0CpLApKaodddX2UKGgGR0BwZ8it7rs0aAdNLQFoCEdAqS0J4bCJoHV9lChoBkdANeQ13t8eCGgHS+FoCEdAqS50vsZ5zHV9lChoBkdAcM8YmLLpzWgHTSIBaAhHQKkvYZb6guh1fZQoaAZHQGFLLNW2gFpoB03oA2gIR0CpMz+i8FpxdX2UKGgGR0Bwv1ZV4oqkaAdNngFoCEdAqTSb0+TvA3V9lChoBkdAcdQuYQarFWgHTU0BaAhHQKk2S2H+Idl1fZQoaAZHQHAy/SlWOp9oB00YAWgIR0CpNzEWykbhdX2UKGgGR0BwOig+QlruaAdNFAFoCEdAqTgTAYYR/XV9lChoBkdAcGDRUm2LHmgHTS4BaAhHQKk5vuCPIXF1fZQoaAZHQHCJCQHRkVhoB00pAWgIR0CpOq2j4593dX2UKGgGR0Bw9Q2jwhGIaAdNUgFoCEdAqTu+MdcSoXV9lChoBkdAcMWkhA4XGmgHTR8BaAhHQKk8rZWaMJh1fZQoaAZHQHIUwdKdxyZoB00sAWgIR0CpPj3I2fkFdX2UKGgGR0Bs2yp71Iy1aAdNFwFoCEdAqT8hSJj2BnV9lChoBkdAP5tfsu3+dmgHTQUBaAhHQKk/6amXPZ91fZQoaAZHQG+2Xhn8KohoB01HAWgIR0CpQhBGx2SudX2UKGgGR0BwZ7iyY5T7aAdNNAFoCEdAqUOHRPXTVnV9lChoBkdAbFkecx0uDmgHTSkBaAhHQKlEn6C17Y11fZQoaAZHQHBeN7BwdbRoB00RAWgIR0CpRX5CfHxSdX2UKGgGR0BwHkpvxYq5aAdNQwFoCEdAqUczGkvboXV9lChoBkdAcbd4wAU+LWgHTVUBaAhHQKlISo86mwd1fZQoaAZHQHFvM7+1jRVoB00eAWgIR0CpSTNHQQcxdX2UKGgGR0Bx5sssg+yJaAdNPgFoCEdAqUrVrl/6PHV9lChoBkdAcSSWWhRIjGgHTScBaAhHQKlLxM9KVY91fZQoaAZHQHFV486mwaBoB007AWgIR0CpTMm7z06HdX2UKGgGR0BxoSzgMtsfaAdNPQFoCEdAqU55bQkX13V9lChoBkdAcC8ckdFOPGgHTS4BaAhHQKlPcAwwj+t1fZQoaAZHQG23dr433pRoB000AWgIR0CpUH2dmQKbdX2UKGgGR0BwBF+b3Gn5aAdNOAFoCEdAqVGWLWI42nV9lChoBkdAcjeTt9hJAmgHTSsBaAhHQKlTVd1uBMB1fZQoaAZHQHEoANgBtDVoB00sAWgIR0CpVFhje9BbdX2UKGgGR0BxEDYDklu4aAdNRQFoCEdAqVVtbaAWi3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 6044, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRurwQp+bn/BTSLn6P6ZWpogCMA2luY5SKES/4pr7qRcdDImdGjFPCw6UAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |