Text Classification
Adapters
Not-For-All-Audiences
File size: 5,642 Bytes
b1d6f2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
773c33c
 
 
74c526b
773c33c
e2bd896
 
 
 
 
 
 
 
 
 
 
773c33c
 
 
 
 
 
 
 
 
 
 
 
 
74c526b
773c33c
 
74c526b
 
 
 
 
 
 
773c33c
 
 
 
 
74c526b
 
 
773c33c
 
 
 
 
74c526b
 
773c33c
 
 
 
74c526b
773c33c
 
 
 
 
74c526b
773c33c
 
 
 
 
74c526b
773c33c
 
 
 
 
74c526b
773c33c
 
 
 
 
 
 
 
 
 
 
74c526b
773c33c
 
 
 
 
 
 
74c526b
773c33c
 
 
 
 
74c526b
 
773c33c
 
74c526b
773c33c
 
 
 
 
 
 
 
 
 
74c526b
773c33c
 
 
 
74c526b
773c33c
 
 
 
 
 
74c526b
773c33c
 
 
 
 
74c526b
773c33c
 
 
 
 
74c526b
773c33c
 
 
74c526b
773c33c
 
 
 
 
 
 
 
 
74c526b
773c33c
 
 
 
 
 
 
74c526b
 
 
 
 
773c33c
 
 
 
 
74c526b
773c33c
 
 
74c526b
773c33c
 
 
74c526b
773c33c
 
 
74c526b
773c33c
 
 
 
 
 
 
74c526b
773c33c
 
 
74c526b
773c33c
 
 
 
 
74c526b
773c33c
 
 
74c526b
773c33c
 
 
74c526b
773c33c
 
 
74c526b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
---
license: apache-2.0
datasets:
- openai/MMMLU
language:
- aa
- ae
- ak
- as
metrics:
- accuracy
base_model:
- openai/whisper-large-v3-turbo
new_version: meta-llama/Llama-3.1-8B-Instruct
pipeline_tag: text-classification
library_name: adapter-transformers
tags:
- not-for-all-audiences
---
from adapters import AutoAdapterModel

model_name = "dbmdz/bert-base-german-cased"
model = AutoAdapterModel.from_pretrained(model_name)
model.load_adapter("LukasKorvas/German", set_active=True)---
license: apache-2.0
datasets:
- openai/MMMLU
language:
- af
metrics:
- accuracy
base_model:
- openai/whisper-large-v3-turbo
new_version: meta-llama/Llama-3.1-8B-Instruct
library_name: adapter-transformers
---
# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

Tento model je prispôsobený pre úlohy spracovania prirodzeného jazyka v nemčine, ako je klasifikácia textu a generovanie konverzačného obsahu.


- **Developed by:** [Lukas]
- **Funded by [optional]:** [Korvas]
- **Shared by [optional]:** [Nemčina pre Samoukov]
- **Model type:** [text a video]
- **Language(s) (NLP):** [Slovak, German]
- **License:** [no]
- **Finetuned from model [optional]:** [no]

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [no]
- **Paper [optional]:** [no]
- **Demo [optional]:** [no]

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

Tento model môže byť použitý na konverzačné AI aplikácie, učenie jazykov, automatizáciu zákazníckych služieb a podobne.

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[Learn german]

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[try]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[no]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[no risk]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

[zaklady nemeckého jazyka]

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[kniha nemčina pre samoukov]

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

Skúška

#### Preprocessing [optional]

[book]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[co to je]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->
 co to je 
### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[co to je]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[nerozumiem ti]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[ako na to]

### Results

[ idem skusit]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[uz to pusti]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [neviem]
- **Hours used:** [dve]
- **Cloud Provider:** [ano]
- **Compute Region:** [neviem]
- **Carbon Emitted:** [asi]

## Technical Specifications [optional]

### Model Architecture and Objective

[neviem]

### Compute Infrastructure

[neviem]

#### Hardware

[neviem]

#### Software

[neviem]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[neviem]

**APA:**

[neviem]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[neviem]

## More Information [optional]

[kolko este]

## Model Card Authors [optional]

[dobre ]

## Model Card Contact

[koniec]