--- license: apache-2.0 datasets: - openai/MMMLU language: - aa - ae - ak - as metrics: - accuracy base_model: - openai/whisper-large-v3-turbo new_version: meta-llama/Llama-3.1-8B-Instruct pipeline_tag: text-classification library_name: adapter-transformers tags: - not-for-all-audiences --- from adapters import AutoAdapterModel model_name = "dbmdz/bert-base-german-cased" model = AutoAdapterModel.from_pretrained(model_name) model.load_adapter("LukasKorvas/German", set_active=True)--- license: apache-2.0 datasets: - openai/MMMLU language: - af metrics: - accuracy base_model: - openai/whisper-large-v3-turbo new_version: meta-llama/Llama-3.1-8B-Instruct library_name: adapter-transformers --- # Model Card for Model ID This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description Tento model je prispôsobený pre úlohy spracovania prirodzeného jazyka v nemčine, ako je klasifikácia textu a generovanie konverzačného obsahu. - **Developed by:** [Lukas] - **Funded by [optional]:** [Korvas] - **Shared by [optional]:** [Nemčina pre Samoukov] - **Model type:** [text a video] - **Language(s) (NLP):** [Slovak, German] - **License:** [no] - **Finetuned from model [optional]:** [no] ### Model Sources [optional] - **Repository:** [no] - **Paper [optional]:** [no] - **Demo [optional]:** [no] ## Uses Tento model môže byť použitý na konverzačné AI aplikácie, učenie jazykov, automatizáciu zákazníckych služieb a podobne. ### Direct Use [Learn german] ### Downstream Use [optional] [try] ### Out-of-Scope Use [no] ## Bias, Risks, and Limitations [no risk] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [zaklady nemeckého jazyka] ## Training Details ### Training Data [kniha nemčina pre samoukov] ### Training Procedure Skúška #### Preprocessing [optional] [book] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [co to je] ## Evaluation co to je ### Testing Data, Factors & Metrics #### Testing Data [co to je] #### Factors [nerozumiem ti] #### Metrics [ako na to] ### Results [ idem skusit] #### Summary ## Model Examination [optional] [uz to pusti] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [neviem] - **Hours used:** [dve] - **Cloud Provider:** [ano] - **Compute Region:** [neviem] - **Carbon Emitted:** [asi] ## Technical Specifications [optional] ### Model Architecture and Objective [neviem] ### Compute Infrastructure [neviem] #### Hardware [neviem] #### Software [neviem] ## Citation [optional] **BibTeX:** [neviem] **APA:** [neviem] ## Glossary [optional] [neviem] ## More Information [optional] [kolko este] ## Model Card Authors [optional] [dobre ] ## Model Card Contact [koniec]