File size: 1,831 Bytes
3f0929b
 
 
 
 
 
 
 
 
 
 
 
 
be554ca
3f0929b
 
2ddf719
3f0929b
be554ca
3f0929b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be554ca
3f0929b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
language:
- en
license: creativeml-openrail-m
tags:
- stable-diffusion
- stable-diffusion-diffusers
- inpainting
- art
- artistic
- diffusers
- anime
- absolute-realism
duplicated_from: lykon/absolute-reality-1.6525-inpainting
---

# Absolute reality 1.6525 inpainting

`lykon/absolute-reality-1.6525-inpainting` is a Stable Diffusion Inpainting model that has been fine-tuned on [runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting).

Please consider supporting me: 
- on [Patreon](https://www.patreon.com/Lykon275)
- or [buy me a coffee](https://snipfeed.co/lykon)

## Diffusers

For more general information on how to run inpainting models with 🧨 Diffusers, see [the docs](https://huggingface.co/docs/diffusers/using-diffusers/inpaint).

1. Installation

```
pip install diffusers transformers accelerate
```

2. Run
```py
from diffusers import AutoPipelineForInpainting, DEISMultistepScheduler
import torch
from diffusers.utils import load_image

pipe = AutoPipelineForInpainting.from_pretrained('lykon/absolute-reality-1.6525-inpainting', torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

image = load_image(img_url)
mask_image = load_image(mask_url)


prompt = "a majestic tiger sitting on a park bench"

generator = torch.manual_seed(33)
image = pipe(prompt, image=image, mask_image=mask_image, generator=generator, num_inference_steps=25).images[0]  
image.save("./image.png")
```

![](./image.png)