File size: 2,785 Bytes
55a4b1d
 
7d3f2b9
 
 
 
 
 
55a4b1d
 
7d3f2b9
55a4b1d
7d3f2b9
55a4b1d
 
 
 
 
 
 
 
7d3f2b9
 
 
 
55a4b1d
 
 
 
7d3f2b9
 
 
 
 
 
 
 
 
55a4b1d
7d3f2b9
55a4b1d
7d3f2b9
55a4b1d
7d3f2b9
 
 
55a4b1d
7d3f2b9
55a4b1d
7d3f2b9
 
55a4b1d
7d3f2b9
 
 
55a4b1d
 
 
 
 
 
 
7d3f2b9
 
 
 
55a4b1d
 
 
 
 
 
 
7d3f2b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55a4b1d
 
 
 
 
 
 
7d3f2b9
55a4b1d
 
 
 
 
 
 
 
 
 
 
7d3f2b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
library_name: transformers
tags:
- audio
- automatic-speech-recognition
license: mit
language:
- ar
---

# ArTST (ASR task)

ArTST model finetuned for  automatic speech recognition (speech-to-text) on MGB2. 


### Model Description

<!-- Provide a longer summary of what this model is. -->

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Developed by:** Speech Lab, MBZUAI
- **Model type:** SpeechT5
- **Language:** Arabic
- **Finetuned from:** (ArTST pretrained)[https://github.com/mbzuai-nlp/ArTST]


## How to Get Started with the Model

```python
import soundfile as sf
from transformers import (
    SpeechT5Config,
    SpeechT5FeatureExtractor,
    SpeechT5ForSpeechToText,
    SpeechT5Processor,
    SpeechT5Tokenizer,
)

from custom_tokenizer import CustomTextTokenizer

device = "cuda" if torch.cuda.is_available() else "cpu"

tokenizer = SpeechT5Tokenizer.from_pretrained("mbzuai/artst_asr")
processor = SpeechT5Processor.from_pretrained("mbzuai/artst_asr" , tokenizer=tokenizer)
model = SpeechT5ForSpeechToText.from_pretrained("mbzuai/artst_asr").to(device)

audio, sr = sf.read("audio.wav")

inputs = processor(audio=audio, sampling_rate=sr, return_tensors="pt")
predicted_ids = model.generate(**inputs.to(device), max_length=150)

transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
print(transcription[0])
```







### Model Sources [optional]
- **Repository:** [github](https://github.com/mbzuai-nlp/ArTST)
- **Paper :** [ArabicNLP2023](https://aclanthology.org/2023.arabicnlp-1.5/)
<!-- - **Demo [optional]:** [More Information Needed] -->


## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**
```
@inproceedings{toyin-etal-2023-artst,
    title = "{A}r{TST}: {A}rabic Text and Speech Transformer",
    author = "Toyin, Hawau  and
      Djanibekov, Amirbek  and
      Kulkarni, Ajinkya  and
      Aldarmaki, Hanan",
    booktitle = "Proceedings of ArabicNLP 2023",
    month = dec,
    year = "2023",
    address = "Singapore (Hybrid)",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.arabicnlp-1.5",
    doi = "10.18653/v1/2023.arabicnlp-1.5",
    pages = "41--51",
}
```
<!-- **APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

<!-- [More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed] -->