ppo-LunarLander-v2 / config.json
MFawad's picture
Upload PPO LunarLander-v2 trained agent
83f60a4
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d30ea9e1630>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d30ea9e16c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d30ea9e1750>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d30ea9e17e0>", "_build": "<function ActorCriticPolicy._build at 0x7d30ea9e1870>", "forward": "<function ActorCriticPolicy.forward at 0x7d30ea9e1900>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d30ea9e1990>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d30ea9e1a20>", "_predict": "<function ActorCriticPolicy._predict at 0x7d30ea9e1ab0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d30ea9e1b40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d30ea9e1bd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d30ea9e1c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d30eab8dc80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701857765345600882, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEapBT4sbUM/HkUPvmUrrb6KXgg9qT6GvQAAAAAAAAAAmsBavaw7mz7ue9898mlxvrnBmLw3M4I9AAAAAAAAAACAXx69nXEJPt6clD1pMCa+BvhfPXZ4Sr0AAAAAAAAAADNwdD0fn6k/Zqm9PmyB0b5uD5Q9jYEoPgAAAAAAAAAAmtBdPcMJR7pvEig4j5MOMwbic7prlka3AACAPwAAgD/NhaM9jLZQPvA7270Z9aO+mlJlvfUM9TwAAAAAAAAAAOax/T3ywBU/OujzvVWIqL5BC8k8Ha1quwAAAAAAAAAAYEe0vkr7cD+01Tq+dlQTv1dRvr7I4jA+AAAAAAAAAAATpl4+8/a1P3qfFj/NI6y+dISpPlaPGj4AAAAAAAAAAM17kLxFqa88uwz5PYSGPr51o6M9lU6TvAAAAAAAAAAAmr4NPeBgsT9oSO8+TOZ0vvPZPbu4+NA9AAAAAAAAAADaaIm9Lqi7vK4MED7P1Si932kcvvLnfb4AAIA/AACAP83FhLzXciY8AtCfPcdLf776DNy9cDgkPQAAgD8AAAAATT8Zva6Dk7pNsd80K5U3L54aM7u8wyy0AACAPwAAgD/AVK09OKmIPWVR6zv+/Si+TVquvc51krwAAAAAAAAAACakvb2cTh28j2cBPQVx8zuBpoi9oHLWPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJfy3G4qgCMAWyUTUABjAF0lEdAkd17nDBMz3V9lChoBkdATbTsv7FbV2gHS7BoCEdAkd2c23rleXV9lChoBkdAcMvMPSUkfWgHS/9oCEdAkd8UbgjyF3V9lChoBkdAcYRB7eEZi2gHTR0BaAhHQJHgWULUkOZ1fZQoaAZHQHD4pP69CeFoB00jAWgIR0CR4Iq33HrAdX2UKGgGR0BxKY/8l5WzaAdL8GgIR0CR4UGdI5HVdX2UKGgGR0ByiyU6gdwOaAdL+mgIR0CR4kp6hQFcdX2UKGgGR0ByJ5ffGdZraAdNAgFoCEdAkeJT9n9NvnV9lChoBkdAc5ojCHh0hmgHTQABaAhHQJHjKt3fQ8h1fZQoaAZHQHKE1ejVQRBoB00UAWgIR0CR4/FajesQdX2UKGgGR0BqLtXPqs2faAdNngFoCEdAkeQWNm16V3V9lChoBkdAbwkwoLG7z2gHTR4BaAhHQJHkYrBj4Hp1fZQoaAZHQG/fGq5sj3VoB00aAWgIR0CR5LuzyBkJdX2UKGgGR0BytPmr8zhxaAdNIgFoCEdAkeTc3uNPxnV9lChoBkdAbu9eKKpDNWgHTQoBaAhHQJHlYWLxZuB1fZQoaAZHQHDSjundfsxoB00lAWgIR0CR5XvqC6H1dX2UKGgGR0BvYcidJ8OTaAdNJQFoCEdAkeYl4oqkM3V9lChoBkdAbbvvG6wt8WgHTToBaAhHQJHmdElVtGd1fZQoaAZHQG+K1k1/DtRoB00SAWgIR0CR5vojv/ipdX2UKGgGR0BxogDDCP6saAdNCAFoCEdAkef/EsJ6Y3V9lChoBkdAcLdOC5EtumgHTRUBaAhHQJHokBT4tYl1fZQoaAZHQHD3swL3K0VoB0vqaAhHQJHpxFb3XZp1fZQoaAZHQHCcNAHE/B5oB00nAWgIR0CR6d1fmcOLdX2UKGgGR0Bx+CS8rZrYaAdNJQFoCEdAkeq770nPV3V9lChoBkdAcnXAvcrRSmgHTQwBaAhHQJHrhH3Dej51fZQoaAZHQHB9S3gDRtxoB01QAWgIR0CR7BlyR0U5dX2UKGgGR0Bu01wkxASnaAdNAgFoCEdAkewnZbpu/HV9lChoBkdAcY0Jp35eq2gHTSsBaAhHQJHslOerdWR1fZQoaAZHQHCPaQzUI9loB00PAWgIR0CR7QSydFvydX2UKGgGR0Byth/iHZbqaAdNMwFoCEdAke0PZyuIRHV9lChoBkdAcSRw1ivxIGgHTUcBaAhHQJHt60pmVZ91fZQoaAZHQHKA1WXC0nhoB00ZAWgIR0CR7iLKFIuodX2UKGgGR0ByjC0WuX/paAdNFQFoCEdAke5Y3eenRHV9lChoBkdAcv01FH8TBmgHTRgBaAhHQJHu++RHPNV1fZQoaAZHQHIWgNTcZcdoB01qAWgIR0CR75wYLsrvdX2UKGgGR0Bxe06PsAvMaAdNRQFoCEdAkfGJPdl/Y3V9lChoBkdAcwtgWac7Q2gHTTQBaAhHQJHxoz9CNS91fZQoaAZHQHL2KnFYMfBoB00oAWgIR0CR8rJ5mh/RdX2UKGgGR0BxD+r/82rGaAdL9WgIR0CR8tAeq7yydX2UKGgGR0BvEz2QGOdYaAdNGQFoCEdAkfMjOxB3R3V9lChoBkdAcCRKPGQ0XWgHTUQBaAhHQJHzeGmDUVl1fZQoaAZHQHHV8dkrf+FoB00KAWgIR0CSBHtSydFwdX2UKGgGR0BuAlKZlWfcaAdNEQFoCEdAkgSj6SDAanV9lChoBkdAbhrjR2KVIWgHTRUBaAhHQJIFO7sfJV91fZQoaAZHQHJZBxtHhCNoB00eAWgIR0CSBfcQyylfdX2UKGgGR0BxnHVwxWT5aAdL/GgIR0CSBivv0AcUdX2UKGgGR0ByIVIQOFxoaAdNLQFoCEdAkgZ2nsLORnV9lChoBkdAcVuwtapxWGgHTRUBaAhHQJIGyPHT7VJ1fZQoaAZHQG1w5C4SYgJoB00NAWgIR0CSB+cwQDmsdX2UKGgGR0BtEzNyHVPOaAdNMQFoCEdAkghcgEEDAHV9lChoBkdAcB2u9eyAx2gHTSABaAhHQJIJXBl+Vkd1fZQoaAZHQHK2PYODrZ9oB0v5aAhHQJIKOgf2bod1fZQoaAZHQHD06eK8+RpoB00oAWgIR0CSDBHbAUL2dX2UKGgGR0BxKhUyYXwcaAdNCgFoCEdAkg1waNuLrHV9lChoBkdAchLp0wJw9GgHTR0BaAhHQJINwgfU4Jh1fZQoaAZHQG+LcynDR+loB0vpaAhHQJIN/fBN21V1fZQoaAZHQG89wm/nGKhoB002AWgIR0CSDmw0waisdX2UKGgGR0BzZjlMh5gPaAdNDgFoCEdAkg6uxnnMdXV9lChoBkdActqng5zYEmgHTVIBaAhHQJIPbsgMc6x1fZQoaAZHQG7qbQswtapoB00yAWgIR0CSD+2IwdsBdX2UKGgGR0BwdiHh0hePaAdNFgFoCEdAkhEWQr+YMXV9lChoBkdAcXzCSA6Mi2gHS+toCEdAkhFQ7kn1F3V9lChoBkdAbmxqKxcE/2gHTQsBaAhHQJIRVOzposZ1fZQoaAZHQG8LJ3X7LuBoB00wAWgIR0CSElpazNUwdX2UKGgGR0BxsxKkEcKgaAdNLgFoCEdAkhRLM1TBInV9lChoBkdAcMyDifg75mgHTQoBaAhHQJIVBRdhRZV1fZQoaAZHQHBveHvc8DBoB02GAWgIR0CSFSj7yhBadX2UKGgGR0BzC9zzVc2SaAdNVwFoCEdAkhatmUW2w3V9lChoBkdAcMOG4ZuQ62gHS/NoCEdAkhbd5UtI1HV9lChoBkdAcJJavRqoImgHS/poCEdAkhc7WZqmCXV9lChoBkdAcaR13+uNgmgHTSYBaAhHQJIXRF6Rhc91fZQoaAZHQHIcLT6SDAdoB00NAWgIR0CSGAMLncL0dX2UKGgGR0BsxeL9/BnBaAdNEwFoCEdAkhhdb9qDb3V9lChoBkdAcR9JiRW912gHTS8BaAhHQJIYWO0b9611fZQoaAZHQHCIO7+T/yZoB00IAWgIR0CSGI2ETQE7dX2UKGgGR0Bwd3BN21UmaAdL62gIR0CSGQ6Uqx1QdX2UKGgGR0BwX0NlRP43aAdNFgFoCEdAkhk3J1aGH3V9lChoBkdAcSoDx9XtB2gHTRIBaAhHQJIZ+12JSBN1fZQoaAZHQHKOzrqt5lhoB00JAWgIR0CSGn6dDpkgdX2UKGgGR0BzVKVopQUIaAdNSQFoCEdAkhs9xQzk63V9lChoBkdAb0Ew8GLUC2gHTQMBaAhHQJIbnYAbQ1J1fZQoaAZHQHKfO36Q/5doB00dAWgIR0CSHNSKWLP2dX2UKGgGR0ByMCAbyYoiaAdNKAFoCEdAkh1Ebo8p1HV9lChoBkdAcmr8Djin52gHTREBaAhHQJIeDcDbJwN1fZQoaAZHQHLVarvLHMloB00OAWgIR0CSHinG8274dX2UKGgGR0BxvnnIQvpRaAdL7GgIR0CSHrrHU+cIdX2UKGgGR0ByVnVoYekpaAdNBwFoCEdAkh8zD0lJH3V9lChoBkdAcFXjPOY6XGgHS/VoCEdAkh9BOYYzi3V9lChoBkdAb00/LTx5LWgHTREBaAhHQJIf4R9PUKB1fZQoaAZHQG/42pIczZZoB0v7aAhHQJIgNog3cYZ1fZQoaAZHQHIwYu01IiFoB00GAWgIR0CSIFaqS5iFdX2UKGgGR0BzNsupS75EaAdNWQFoCEdAkiDFlGwzL3V9lChoBkdAcMvcxTKkmGgHTVwBaAhHQJIg0lTm4iJ1fZQoaAZHQHFm20VrRBxoB00CAWgIR0CSITw/gR9PdX2UKGgGR0BwOPv5P/JeaAdL62gIR0CSIdIXCTEBdX2UKGgGR0BxQRonKGL2aAdNEwFoCEdAkiIVH4Glh3V9lChoBkdAb86CDEm6XmgHTRUBaAhHQJIjOqR2bG51fZQoaAZHQHDI+w1R+BpoB0v5aAhHQJIkBMQEpy91fZQoaAZHQG41cvEjxCpoB00aAWgIR0CSJJDIikftdX2UKGgGR0BwfB8MNMGpaAdL+WgIR0CSJMceKbazdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}