Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +23 -23
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 273.73 +/- 16.85
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d30ea9e1630>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d30ea9e16c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d30ea9e1750>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d30ea9e17e0>", "_build": "<function ActorCriticPolicy._build at 0x7d30ea9e1870>", "forward": "<function ActorCriticPolicy.forward at 0x7d30ea9e1900>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d30ea9e1990>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d30ea9e1a20>", "_predict": "<function ActorCriticPolicy._predict at 0x7d30ea9e1ab0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d30ea9e1b40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d30ea9e1bd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d30ea9e1c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d30eab8dc80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701857765345600882, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEapBT4sbUM/HkUPvmUrrb6KXgg9qT6GvQAAAAAAAAAAmsBavaw7mz7ue9898mlxvrnBmLw3M4I9AAAAAAAAAACAXx69nXEJPt6clD1pMCa+BvhfPXZ4Sr0AAAAAAAAAADNwdD0fn6k/Zqm9PmyB0b5uD5Q9jYEoPgAAAAAAAAAAmtBdPcMJR7pvEig4j5MOMwbic7prlka3AACAPwAAgD/NhaM9jLZQPvA7270Z9aO+mlJlvfUM9TwAAAAAAAAAAOax/T3ywBU/OujzvVWIqL5BC8k8Ha1quwAAAAAAAAAAYEe0vkr7cD+01Tq+dlQTv1dRvr7I4jA+AAAAAAAAAAATpl4+8/a1P3qfFj/NI6y+dISpPlaPGj4AAAAAAAAAAM17kLxFqa88uwz5PYSGPr51o6M9lU6TvAAAAAAAAAAAmr4NPeBgsT9oSO8+TOZ0vvPZPbu4+NA9AAAAAAAAAADaaIm9Lqi7vK4MED7P1Si932kcvvLnfb4AAIA/AACAP83FhLzXciY8AtCfPcdLf776DNy9cDgkPQAAgD8AAAAATT8Zva6Dk7pNsd80K5U3L54aM7u8wyy0AACAPwAAgD/AVK09OKmIPWVR6zv+/Si+TVquvc51krwAAAAAAAAAACakvb2cTh28j2cBPQVx8zuBpoi9oHLWPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJfy3G4qgCMAWyUTUABjAF0lEdAkd17nDBMz3V9lChoBkdATbTsv7FbV2gHS7BoCEdAkd2c23rleXV9lChoBkdAcMvMPSUkfWgHS/9oCEdAkd8UbgjyF3V9lChoBkdAcYRB7eEZi2gHTR0BaAhHQJHgWULUkOZ1fZQoaAZHQHD4pP69CeFoB00jAWgIR0CR4Iq33HrAdX2UKGgGR0BxKY/8l5WzaAdL8GgIR0CR4UGdI5HVdX2UKGgGR0ByiyU6gdwOaAdL+mgIR0CR4kp6hQFcdX2UKGgGR0ByJ5ffGdZraAdNAgFoCEdAkeJT9n9NvnV9lChoBkdAc5ojCHh0hmgHTQABaAhHQJHjKt3fQ8h1fZQoaAZHQHKE1ejVQRBoB00UAWgIR0CR4/FajesQdX2UKGgGR0BqLtXPqs2faAdNngFoCEdAkeQWNm16V3V9lChoBkdAbwkwoLG7z2gHTR4BaAhHQJHkYrBj4Hp1fZQoaAZHQG/fGq5sj3VoB00aAWgIR0CR5LuzyBkJdX2UKGgGR0BytPmr8zhxaAdNIgFoCEdAkeTc3uNPxnV9lChoBkdAbu9eKKpDNWgHTQoBaAhHQJHlYWLxZuB1fZQoaAZHQHDSjundfsxoB00lAWgIR0CR5XvqC6H1dX2UKGgGR0BvYcidJ8OTaAdNJQFoCEdAkeYl4oqkM3V9lChoBkdAbbvvG6wt8WgHTToBaAhHQJHmdElVtGd1fZQoaAZHQG+K1k1/DtRoB00SAWgIR0CR5vojv/ipdX2UKGgGR0BxogDDCP6saAdNCAFoCEdAkef/EsJ6Y3V9lChoBkdAcLdOC5EtumgHTRUBaAhHQJHokBT4tYl1fZQoaAZHQHD3swL3K0VoB0vqaAhHQJHpxFb3XZp1fZQoaAZHQHCcNAHE/B5oB00nAWgIR0CR6d1fmcOLdX2UKGgGR0Bx+CS8rZrYaAdNJQFoCEdAkeq770nPV3V9lChoBkdAcnXAvcrRSmgHTQwBaAhHQJHrhH3Dej51fZQoaAZHQHB9S3gDRtxoB01QAWgIR0CR7BlyR0U5dX2UKGgGR0Bu01wkxASnaAdNAgFoCEdAkewnZbpu/HV9lChoBkdAcY0Jp35eq2gHTSsBaAhHQJHslOerdWR1fZQoaAZHQHCPaQzUI9loB00PAWgIR0CR7QSydFvydX2UKGgGR0Byth/iHZbqaAdNMwFoCEdAke0PZyuIRHV9lChoBkdAcSRw1ivxIGgHTUcBaAhHQJHt60pmVZ91fZQoaAZHQHKA1WXC0nhoB00ZAWgIR0CR7iLKFIuodX2UKGgGR0ByjC0WuX/paAdNFQFoCEdAke5Y3eenRHV9lChoBkdAcv01FH8TBmgHTRgBaAhHQJHu++RHPNV1fZQoaAZHQHIWgNTcZcdoB01qAWgIR0CR75wYLsrvdX2UKGgGR0Bxe06PsAvMaAdNRQFoCEdAkfGJPdl/Y3V9lChoBkdAcwtgWac7Q2gHTTQBaAhHQJHxoz9CNS91fZQoaAZHQHL2KnFYMfBoB00oAWgIR0CR8rJ5mh/RdX2UKGgGR0BxD+r/82rGaAdL9WgIR0CR8tAeq7yydX2UKGgGR0BvEz2QGOdYaAdNGQFoCEdAkfMjOxB3R3V9lChoBkdAcCRKPGQ0XWgHTUQBaAhHQJHzeGmDUVl1fZQoaAZHQHHV8dkrf+FoB00KAWgIR0CSBHtSydFwdX2UKGgGR0BuAlKZlWfcaAdNEQFoCEdAkgSj6SDAanV9lChoBkdAbhrjR2KVIWgHTRUBaAhHQJIFO7sfJV91fZQoaAZHQHJZBxtHhCNoB00eAWgIR0CSBfcQyylfdX2UKGgGR0BxnHVwxWT5aAdL/GgIR0CSBivv0AcUdX2UKGgGR0ByIVIQOFxoaAdNLQFoCEdAkgZ2nsLORnV9lChoBkdAcVuwtapxWGgHTRUBaAhHQJIGyPHT7VJ1fZQoaAZHQG1w5C4SYgJoB00NAWgIR0CSB+cwQDmsdX2UKGgGR0BtEzNyHVPOaAdNMQFoCEdAkghcgEEDAHV9lChoBkdAcB2u9eyAx2gHTSABaAhHQJIJXBl+Vkd1fZQoaAZHQHK2PYODrZ9oB0v5aAhHQJIKOgf2bod1fZQoaAZHQHD06eK8+RpoB00oAWgIR0CSDBHbAUL2dX2UKGgGR0BxKhUyYXwcaAdNCgFoCEdAkg1waNuLrHV9lChoBkdAchLp0wJw9GgHTR0BaAhHQJINwgfU4Jh1fZQoaAZHQG+LcynDR+loB0vpaAhHQJIN/fBN21V1fZQoaAZHQG89wm/nGKhoB002AWgIR0CSDmw0waisdX2UKGgGR0BzZjlMh5gPaAdNDgFoCEdAkg6uxnnMdXV9lChoBkdActqng5zYEmgHTVIBaAhHQJIPbsgMc6x1fZQoaAZHQG7qbQswtapoB00yAWgIR0CSD+2IwdsBdX2UKGgGR0BwdiHh0hePaAdNFgFoCEdAkhEWQr+YMXV9lChoBkdAcXzCSA6Mi2gHS+toCEdAkhFQ7kn1F3V9lChoBkdAbmxqKxcE/2gHTQsBaAhHQJIRVOzposZ1fZQoaAZHQG8LJ3X7LuBoB00wAWgIR0CSElpazNUwdX2UKGgGR0BxsxKkEcKgaAdNLgFoCEdAkhRLM1TBInV9lChoBkdAcMyDifg75mgHTQoBaAhHQJIVBRdhRZV1fZQoaAZHQHBveHvc8DBoB02GAWgIR0CSFSj7yhBadX2UKGgGR0BzC9zzVc2SaAdNVwFoCEdAkhatmUW2w3V9lChoBkdAcMOG4ZuQ62gHS/NoCEdAkhbd5UtI1HV9lChoBkdAcJJavRqoImgHS/poCEdAkhc7WZqmCXV9lChoBkdAcaR13+uNgmgHTSYBaAhHQJIXRF6Rhc91fZQoaAZHQHIcLT6SDAdoB00NAWgIR0CSGAMLncL0dX2UKGgGR0BsxeL9/BnBaAdNEwFoCEdAkhhdb9qDb3V9lChoBkdAcR9JiRW912gHTS8BaAhHQJIYWO0b9611fZQoaAZHQHCIO7+T/yZoB00IAWgIR0CSGI2ETQE7dX2UKGgGR0Bwd3BN21UmaAdL62gIR0CSGQ6Uqx1QdX2UKGgGR0BwX0NlRP43aAdNFgFoCEdAkhk3J1aGH3V9lChoBkdAcSoDx9XtB2gHTRIBaAhHQJIZ+12JSBN1fZQoaAZHQHKOzrqt5lhoB00JAWgIR0CSGn6dDpkgdX2UKGgGR0BzVKVopQUIaAdNSQFoCEdAkhs9xQzk63V9lChoBkdAb0Ew8GLUC2gHTQMBaAhHQJIbnYAbQ1J1fZQoaAZHQHKfO36Q/5doB00dAWgIR0CSHNSKWLP2dX2UKGgGR0ByMCAbyYoiaAdNKAFoCEdAkh1Ebo8p1HV9lChoBkdAcmr8Djin52gHTREBaAhHQJIeDcDbJwN1fZQoaAZHQHLVarvLHMloB00OAWgIR0CSHinG8274dX2UKGgGR0BxvnnIQvpRaAdL7GgIR0CSHrrHU+cIdX2UKGgGR0ByVnVoYekpaAdNBwFoCEdAkh8zD0lJH3V9lChoBkdAcFXjPOY6XGgHS/VoCEdAkh9BOYYzi3V9lChoBkdAb00/LTx5LWgHTREBaAhHQJIf4R9PUKB1fZQoaAZHQG/42pIczZZoB0v7aAhHQJIgNog3cYZ1fZQoaAZHQHIwYu01IiFoB00GAWgIR0CSIFaqS5iFdX2UKGgGR0BzNsupS75EaAdNWQFoCEdAkiDFlGwzL3V9lChoBkdAcMvcxTKkmGgHTVwBaAhHQJIg0lTm4iJ1fZQoaAZHQHFm20VrRBxoB00CAWgIR0CSITw/gR9PdX2UKGgGR0BwOPv5P/JeaAdL62gIR0CSIdIXCTEBdX2UKGgGR0BxQRonKGL2aAdNEwFoCEdAkiIVH4Glh3V9lChoBkdAb86CDEm6XmgHTRUBaAhHQJIjOqR2bG51fZQoaAZHQHDI+w1R+BpoB0v5aAhHQJIkBMQEpy91fZQoaAZHQG41cvEjxCpoB00aAWgIR0CSJJDIikftdX2UKGgGR0BwfB8MNMGpaAdL+WgIR0CSJMceKbazdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a91a50455a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a91a5045630>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a91a50456c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a91a5045750>", "_build": "<function ActorCriticPolicy._build at 0x7a91a50457e0>", "forward": "<function ActorCriticPolicy.forward at 0x7a91a5045870>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a91a5045900>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a91a5045990>", "_predict": "<function ActorCriticPolicy._predict at 0x7a91a5045a20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a91a5045ab0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a91a5045b40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a91a5045bd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a91a5048800>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1512000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702395982267112737, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3sQz3u5Ys9GwNgvEmBmr4YSUE9VZoevQAAAAAAAAAAZgH7PSFYfz4+4DO+gknEvjicZTutG1K9AAAAAAAAAADzSpA9yuOCPpi7Cr4PeK6+LHUOPdqBFr0AAAAAAAAAAM3SZj2fe867GrgIu4lX7jtd/jS9+vTXPAAAgD8AAIA/MwNIO8pABj5ZOJM9VtKOvkFDSz2Oh448AAAAAAAAAACzmQw9XunkPS5D8rzmX4i+rXCHPc4H47sAAAAAAAAAALM8hT0fZK88ii1tPBr1dL4eaNg9G/ZnvQAAAAAAAAAA81riPdj0nz8WNcc+o0PEvg+dNz6uipM9AAAAAAAAAACaY2480/OCP0DH9z1pU8G+p2S2uwRynz0AAAAAAAAAAGZiiz1Ims89CGhWPOT1mL7K6RU9NtqjvAAAAAAAAAAAmr8NPNRYmT64ojA+a5eOvkFrEj7aQyS8AAAAAAAAAACNFro9bCTKu4op9rzuwrg8/Ck5vV08mz0AAIA/AAAAALOnMD25IoY+yJmsPXtupb5s+648wSA5PAAAAAAAAAAAQGS8Pcubhz9QcZQ934/Gvuahbz2tOhY9AAAAAAAAAADNCFk8rvedur4TPbbNsJ2v4MzkupOKZDUAAIA/AACAP81UqDyuMZG61GGFuKKDZbOkLnU6SpWaNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.008000000000000007, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVFgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHECGWIGhVWMAWyUS/SMAXSUR0CtDdGfoRqXdX2UKGgGR0Byhz9Q40djaAdNBgFoCEdArQ37BsQ/YHV9lChoBkdAchr5d4Vym2gHS+5oCEdArQ4wsf7rLXV9lChoBkdAcdu3kgfU4WgHS/1oCEdArQ6UcdYGMXV9lChoBkdAbciksz2vjmgHTSwBaAhHQK0OqO6unuR1fZQoaAZHQG/ij/MnqmloB00IAWgIR0CtDzKl54W2dX2UKGgGR0ByfCVnmJWOaAdNBgFoCEdArQ90slLOA3V9lChoBkdAcd//0ulGgGgHTR4BaAhHQK0PnsgMc6x1fZQoaAZHQHDe9vOyE+RoB0vXaAhHQK0P2H+Idlx1fZQoaAZHQHDR5G4I8hdoB00rAWgIR0CtD+sbvPTodX2UKGgGR0BvrtCu2Zy/aAdL+2gIR0CtEB3+uNgjdX2UKGgGR0BwgE+u/1xsaAdNGQFoCEdArRBFMuez2XV9lChoBkdAcIRrkbPyCmgHTQMBaAhHQK0Qoo4MnZ11fZQoaAZHQHGEVYlpoK5oB0vxaAhHQK0iPsWweNl1fZQoaAZHQHH/hEBsANpoB0voaAhHQK0iX84Pwux1fZQoaAZHQHH1Fo6CDmNoB00fAWgIR0CtIoNPYWcjdX2UKGgGR0BuMRzo2XLNaAdL9GgIR0CtIrr3bmEHdX2UKGgGR0BxXvn1WbPQaAdNDAFoCEdArSNM+5e7c3V9lChoBkdAcRGOcUdq+WgHS/NoCEdArSNzjzZpSXV9lChoBkdAcMG3VCojwGgHTTABaAhHQK0kTAgPmPp1fZQoaAZHQG8EyQ5myxBoB0v7aAhHQK0kc2kSElF1fZQoaAZHQHG3YToMa0hoB00OAWgIR0CtJHgGB4D+dX2UKGgGR0BwvbPomoitaAdL6mgIR0CtJJwWnCO4dX2UKGgGR0BxMMlOXVslaAdL4mgIR0CtJWGWt2cKdX2UKGgGR0BzYpNbkfcOaAdNHAFoCEdArSV8A93bEnV9lChoBkdAbfcOS4e9z2gHTQYBaAhHQK0liMF2V3V1fZQoaAZHQHCTcbvPTodoB000AWgIR0CtJg62v0ROdX2UKGgGR0BzdKGFi8WcaAdL/2gIR0CtJhaWw/xEdX2UKGgGR0Bv/juOS4e+aAdL4mgIR0CtJi3BHkLhdX2UKGgGR0Bykfp3X7LuaAdL/2gIR0CtJjlf7aZhdX2UKGgGR0BytBTUAks0aAdL/WgIR0CtJlHctXgcdX2UKGgGR0BBvc5Ke05VaAdLzmgIR0CtJnPn0TURdX2UKGgGR0Bw2XlEJBw/aAdNdAFoCEdArSZ6LS/j83V9lChoBkdAcQcMcZLqU2gHS/JoCEdArScM5yU9p3V9lChoBkdAMCu3c580DWgHS9hoCEdArSeWaH9FWnV9lChoBkdAcxqmBvrGBGgHS+xoCEdArSfcihWYGHV9lChoBkdAcGvE74i5eGgHS/VoCEdArSfb4SHuZ3V9lChoBkdAb08oa1kUbmgHS+5oCEdArSgGWKMvRXV9lChoBkdAczmMEA5q/WgHTQ4BaAhHQK0pg+B6KLt1fZQoaAZHQHKoQSWZ7XxoB00TAWgIR0CtKY0+LWI5dX2UKGgGR0BxQwfbKzRhaAdNJgFoCEdArSnIs3AEdXV9lChoBkdAcQu0IC2c8WgHS+ZoCEdArSnvcnE2pHV9lChoBkdAcL6upS75EmgHTRYBaAhHQK0qecz67/Z1fZQoaAZHQHFwK6reZXxoB00dAWgIR0CtKoxnOB1+dX2UKGgGR0BxPmw9q1w6aAdNIwFoCEdArSqMsYl6aHV9lChoBkdAcmGn9ehPCWgHTSwBaAhHQK0qq+1SflJ1fZQoaAZHQHJxefVZs9BoB00cAWgIR0CtKrYXoC+2dX2UKGgGR0BwH/t4RmK7aAdL7mgIR0CtKt2xyGSIdX2UKGgGR0Bu5HRXwLE2aAdNHQFoCEdArSrla+vhZXV9lChoBkdAc0JUNKAavWgHS/VoCEdArSvEw35vcnV9lChoBkdAXv3+0gKWs2gHTegDaAhHQK0r2s6q8151fZQoaAZHQG61lfZ26kJoB0v0aAhHQK0r6SYgJTl1fZQoaAZHQHIqN/BnBcloB00eAWgIR0CtLAo371qWdX2UKGgGR0Bx+/bBXS0CaAdNEAFoCEdArSwVKXfIjnV9lChoBkdAUmAeMhouf2gHS7BoCEdArSzRJd0JW3V9lChoBkdAcNmuwosqa2gHTQUBaAhHQK0tNDye7MB1fZQoaAZHQHITzkELYwtoB00HAWgIR0CtLUHc1wYMdX2UKGgGR0BxjeTnq3VkaAdL6GgIR0CtLbQyhzvJdX2UKGgGR0BtEEZ1mrbQaAdL9WgIR0CtLe/pdKNAdX2UKGgGR0Bvw1ZV4oqkaAdNAgFoCEdArS38bHZK4HV9lChoBkdAchuNVzZHu2gHTQcBaAhHQK0uAQVbiZR1fZQoaAZHQHGobZOBUaRoB00lAWgIR0CtLf/JV81GdX2UKGgGR0Bw4BENOM2naAdNMwFoCEdArS4RpnHvMXV9lChoBkdAcXOZAY51eWgHS/xoCEdArS4ubLEDQ3V9lChoBkdAcZ0PZqVQh2gHS/9oCEdArS4xI8QqZ3V9lChoBkdATILHU+cH4WgHS9loCEdArS6GoJiRXHV9lChoBkdAcYsJCjUNKGgHS+BoCEdArS6LfLs8gnV9lChoBkdAbgejyFwkxGgHS/VoCEdArS8RUR3/xXV9lChoBkdAcgS384xUN2gHTQ0BaAhHQK0vTTkyULV1fZQoaAZHQHB8EL2HtWxoB00gAWgIR0CtL2JO32EkdX2UKGgGR0BsKZ5Z8rqdaAdL/WgIR0CtMEWtlqagdX2UKGgGR0BwEjZdv864aAdNCQFoCEdArTCBGx2SuHV9lChoBkdAcIYr4nF5wGgHS/RoCEdArTCplrdnCnV9lChoBkdAccqtwJgLJGgHTTgBaAhHQK0wvzgdfb91fZQoaAZHQHOOFjI7vG9oB0vxaAhHQK0w2dtl7MR1fZQoaAZHQHBHOkk8ifRoB0v6aAhHQK0xGcR15jZ1fZQoaAZHQHO/ylN1yNpoB0v5aAhHQK0xOAQxveh1fZQoaAZHQHNhMxKxs2xoB0v8aAhHQK0xRSMLncN1fZQoaAZHQHB/liKBNEhoB00OAWgIR0CtMUe0Xxe+dX2UKGgGR0Bx0q+10DEFaAdNGwFoCEdArTFw8W9DhXV9lChoBkdAcbjwaBI4EWgHS/5oCEdArTGrItDlYHV9lChoBkdAclJgeA/cFmgHTQcBaAhHQK0yYJWvKU51fZQoaAZHQHHj5jUd7v5oB01BAWgIR0CtMoJpvgm7dX2UKGgGR0BzAKw1R+BpaAdNIgFoCEdArTL2USqU/3V9lChoBkdAcweXQMQVbmgHTSEBaAhHQK0zCraufVZ1fZQoaAZHQHD5f3FkxypoB0vzaAhHQK0ze+eOGTN1fZQoaAZHQHF3EtmL9/BoB00EAWgIR0CtNB/3WWhRdX2UKGgGR0BzoDs1KoQ4aAdL12gIR0CtNKmpuMuOdX2UKGgGR0Bx4zIV/MGHaAdNGgFoCEdArTTdvn8sMHV9lChoBkdAc4Nhqj8DS2gHTfwBaAhHQK006VBUrCp1fZQoaAZHQGzd8wQDmr9oB0v1aAhHQK01C/UONHZ1fZQoaAZHQHLXqPfbblBoB00KAWgIR0CtNTKdQO4HdX2UKGgGR0BsdR/CqIacaAdNCAFoCEdArTVWNT987nV9lChoBkdAcRanHvMKTmgHTREBaAhHQK01lea8Yht1fZQoaAZHQG11nKwIMSdoB00zAWgIR0CtNaJ+2E00dX2UKGgGR0BwNnQE6kqMaAdNPAFoCEdArTWobXHzYnV9lChoBkdAcCYFdszl92gHS/1oCEdArTXQt6HCXXV9lChoBkdAbp8TFl05l2gHS/JoCEdArTaq8SPEKnV9lChoBkdAcNvQm/nGKmgHTQ0BaAhHQK029GViWmh1fZQoaAZHQHDuCTt9hJBoB00BAWgIR0CtN4yquKXOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 378, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1500, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 70, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67608beac5cd4d19ca1b9877466b5102a16eb6569300ce46d44e87b208ddf02b
|
3 |
+
size 147994
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -77,14 +77,14 @@
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
-
"n_steps":
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
-
"batch_size":
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a91a50455a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a91a5045630>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a91a50456c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a91a5045750>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a91a50457e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a91a5045870>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a91a5045900>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a91a5045990>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a91a5045a20>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a91a5045ab0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a91a5045b40>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a91a5045bd0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a91a5048800>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1512000,
|
25 |
+
"_total_timesteps": 1500000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1702395982267112737,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3sQz3u5Ys9GwNgvEmBmr4YSUE9VZoevQAAAAAAAAAAZgH7PSFYfz4+4DO+gknEvjicZTutG1K9AAAAAAAAAADzSpA9yuOCPpi7Cr4PeK6+LHUOPdqBFr0AAAAAAAAAAM3SZj2fe867GrgIu4lX7jtd/jS9+vTXPAAAgD8AAIA/MwNIO8pABj5ZOJM9VtKOvkFDSz2Oh448AAAAAAAAAACzmQw9XunkPS5D8rzmX4i+rXCHPc4H47sAAAAAAAAAALM8hT0fZK88ii1tPBr1dL4eaNg9G/ZnvQAAAAAAAAAA81riPdj0nz8WNcc+o0PEvg+dNz6uipM9AAAAAAAAAACaY2480/OCP0DH9z1pU8G+p2S2uwRynz0AAAAAAAAAAGZiiz1Ims89CGhWPOT1mL7K6RU9NtqjvAAAAAAAAAAAmr8NPNRYmT64ojA+a5eOvkFrEj7aQyS8AAAAAAAAAACNFro9bCTKu4op9rzuwrg8/Ck5vV08mz0AAIA/AAAAALOnMD25IoY+yJmsPXtupb5s+648wSA5PAAAAAAAAAAAQGS8Pcubhz9QcZQ934/Gvuahbz2tOhY9AAAAAAAAAADNCFk8rvedur4TPbbNsJ2v4MzkupOKZDUAAIA/AACAP81UqDyuMZG61GGFuKKDZbOkLnU6SpWaNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.008000000000000007,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVFgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHECGWIGhVWMAWyUS/SMAXSUR0CtDdGfoRqXdX2UKGgGR0Byhz9Q40djaAdNBgFoCEdArQ37BsQ/YHV9lChoBkdAchr5d4Vym2gHS+5oCEdArQ4wsf7rLXV9lChoBkdAcdu3kgfU4WgHS/1oCEdArQ6UcdYGMXV9lChoBkdAbciksz2vjmgHTSwBaAhHQK0OqO6unuR1fZQoaAZHQG/ij/MnqmloB00IAWgIR0CtDzKl54W2dX2UKGgGR0ByfCVnmJWOaAdNBgFoCEdArQ90slLOA3V9lChoBkdAcd//0ulGgGgHTR4BaAhHQK0PnsgMc6x1fZQoaAZHQHDe9vOyE+RoB0vXaAhHQK0P2H+Idlx1fZQoaAZHQHDR5G4I8hdoB00rAWgIR0CtD+sbvPTodX2UKGgGR0BvrtCu2Zy/aAdL+2gIR0CtEB3+uNgjdX2UKGgGR0BwgE+u/1xsaAdNGQFoCEdArRBFMuez2XV9lChoBkdAcIRrkbPyCmgHTQMBaAhHQK0Qoo4MnZ11fZQoaAZHQHGEVYlpoK5oB0vxaAhHQK0iPsWweNl1fZQoaAZHQHH/hEBsANpoB0voaAhHQK0iX84Pwux1fZQoaAZHQHH1Fo6CDmNoB00fAWgIR0CtIoNPYWcjdX2UKGgGR0BuMRzo2XLNaAdL9GgIR0CtIrr3bmEHdX2UKGgGR0BxXvn1WbPQaAdNDAFoCEdArSNM+5e7c3V9lChoBkdAcRGOcUdq+WgHS/NoCEdArSNzjzZpSXV9lChoBkdAcMG3VCojwGgHTTABaAhHQK0kTAgPmPp1fZQoaAZHQG8EyQ5myxBoB0v7aAhHQK0kc2kSElF1fZQoaAZHQHG3YToMa0hoB00OAWgIR0CtJHgGB4D+dX2UKGgGR0BwvbPomoitaAdL6mgIR0CtJJwWnCO4dX2UKGgGR0BxMMlOXVslaAdL4mgIR0CtJWGWt2cKdX2UKGgGR0BzYpNbkfcOaAdNHAFoCEdArSV8A93bEnV9lChoBkdAbfcOS4e9z2gHTQYBaAhHQK0liMF2V3V1fZQoaAZHQHCTcbvPTodoB000AWgIR0CtJg62v0ROdX2UKGgGR0BzdKGFi8WcaAdL/2gIR0CtJhaWw/xEdX2UKGgGR0Bv/juOS4e+aAdL4mgIR0CtJi3BHkLhdX2UKGgGR0Bykfp3X7LuaAdL/2gIR0CtJjlf7aZhdX2UKGgGR0BytBTUAks0aAdL/WgIR0CtJlHctXgcdX2UKGgGR0BBvc5Ke05VaAdLzmgIR0CtJnPn0TURdX2UKGgGR0Bw2XlEJBw/aAdNdAFoCEdArSZ6LS/j83V9lChoBkdAcQcMcZLqU2gHS/JoCEdArScM5yU9p3V9lChoBkdAMCu3c580DWgHS9hoCEdArSeWaH9FWnV9lChoBkdAcxqmBvrGBGgHS+xoCEdArSfcihWYGHV9lChoBkdAcGvE74i5eGgHS/VoCEdArSfb4SHuZ3V9lChoBkdAb08oa1kUbmgHS+5oCEdArSgGWKMvRXV9lChoBkdAczmMEA5q/WgHTQ4BaAhHQK0pg+B6KLt1fZQoaAZHQHKoQSWZ7XxoB00TAWgIR0CtKY0+LWI5dX2UKGgGR0BxQwfbKzRhaAdNJgFoCEdArSnIs3AEdXV9lChoBkdAcQu0IC2c8WgHS+ZoCEdArSnvcnE2pHV9lChoBkdAcL6upS75EmgHTRYBaAhHQK0qecz67/Z1fZQoaAZHQHFwK6reZXxoB00dAWgIR0CtKoxnOB1+dX2UKGgGR0BxPmw9q1w6aAdNIwFoCEdArSqMsYl6aHV9lChoBkdAcmGn9ehPCWgHTSwBaAhHQK0qq+1SflJ1fZQoaAZHQHJxefVZs9BoB00cAWgIR0CtKrYXoC+2dX2UKGgGR0BwH/t4RmK7aAdL7mgIR0CtKt2xyGSIdX2UKGgGR0Bu5HRXwLE2aAdNHQFoCEdArSrla+vhZXV9lChoBkdAc0JUNKAavWgHS/VoCEdArSvEw35vcnV9lChoBkdAXv3+0gKWs2gHTegDaAhHQK0r2s6q8151fZQoaAZHQG61lfZ26kJoB0v0aAhHQK0r6SYgJTl1fZQoaAZHQHIqN/BnBcloB00eAWgIR0CtLAo371qWdX2UKGgGR0Bx+/bBXS0CaAdNEAFoCEdArSwVKXfIjnV9lChoBkdAUmAeMhouf2gHS7BoCEdArSzRJd0JW3V9lChoBkdAcNmuwosqa2gHTQUBaAhHQK0tNDye7MB1fZQoaAZHQHITzkELYwtoB00HAWgIR0CtLUHc1wYMdX2UKGgGR0BxjeTnq3VkaAdL6GgIR0CtLbQyhzvJdX2UKGgGR0BtEEZ1mrbQaAdL9WgIR0CtLe/pdKNAdX2UKGgGR0Bvw1ZV4oqkaAdNAgFoCEdArS38bHZK4HV9lChoBkdAchuNVzZHu2gHTQcBaAhHQK0uAQVbiZR1fZQoaAZHQHGobZOBUaRoB00lAWgIR0CtLf/JV81GdX2UKGgGR0Bw4BENOM2naAdNMwFoCEdArS4RpnHvMXV9lChoBkdAcXOZAY51eWgHS/xoCEdArS4ubLEDQ3V9lChoBkdAcZ0PZqVQh2gHS/9oCEdArS4xI8QqZ3V9lChoBkdATILHU+cH4WgHS9loCEdArS6GoJiRXHV9lChoBkdAcYsJCjUNKGgHS+BoCEdArS6LfLs8gnV9lChoBkdAbgejyFwkxGgHS/VoCEdArS8RUR3/xXV9lChoBkdAcgS384xUN2gHTQ0BaAhHQK0vTTkyULV1fZQoaAZHQHB8EL2HtWxoB00gAWgIR0CtL2JO32EkdX2UKGgGR0BsKZ5Z8rqdaAdL/WgIR0CtMEWtlqagdX2UKGgGR0BwEjZdv864aAdNCQFoCEdArTCBGx2SuHV9lChoBkdAcIYr4nF5wGgHS/RoCEdArTCplrdnCnV9lChoBkdAccqtwJgLJGgHTTgBaAhHQK0wvzgdfb91fZQoaAZHQHOOFjI7vG9oB0vxaAhHQK0w2dtl7MR1fZQoaAZHQHBHOkk8ifRoB0v6aAhHQK0xGcR15jZ1fZQoaAZHQHO/ylN1yNpoB0v5aAhHQK0xOAQxveh1fZQoaAZHQHNhMxKxs2xoB0v8aAhHQK0xRSMLncN1fZQoaAZHQHB/liKBNEhoB00OAWgIR0CtMUe0Xxe+dX2UKGgGR0Bx0q+10DEFaAdNGwFoCEdArTFw8W9DhXV9lChoBkdAcbjwaBI4EWgHS/5oCEdArTGrItDlYHV9lChoBkdAclJgeA/cFmgHTQcBaAhHQK0yYJWvKU51fZQoaAZHQHHj5jUd7v5oB01BAWgIR0CtMoJpvgm7dX2UKGgGR0BzAKw1R+BpaAdNIgFoCEdArTL2USqU/3V9lChoBkdAcweXQMQVbmgHTSEBaAhHQK0zCraufVZ1fZQoaAZHQHD5f3FkxypoB0vzaAhHQK0ze+eOGTN1fZQoaAZHQHF3EtmL9/BoB00EAWgIR0CtNB/3WWhRdX2UKGgGR0BzoDs1KoQ4aAdL12gIR0CtNKmpuMuOdX2UKGgGR0Bx4zIV/MGHaAdNGgFoCEdArTTdvn8sMHV9lChoBkdAc4Nhqj8DS2gHTfwBaAhHQK006VBUrCp1fZQoaAZHQGzd8wQDmr9oB0v1aAhHQK01C/UONHZ1fZQoaAZHQHLXqPfbblBoB00KAWgIR0CtNTKdQO4HdX2UKGgGR0BsdR/CqIacaAdNCAFoCEdArTVWNT987nV9lChoBkdAcRanHvMKTmgHTREBaAhHQK01lea8Yht1fZQoaAZHQG11nKwIMSdoB00zAWgIR0CtNaJ+2E00dX2UKGgGR0BwNnQE6kqMaAdNPAFoCEdArTWobXHzYnV9lChoBkdAcCYFdszl92gHS/1oCEdArTXQt6HCXXV9lChoBkdAbp8TFl05l2gHS/JoCEdArTaq8SPEKnV9lChoBkdAcNvQm/nGKmgHTQ0BaAhHQK029GViWmh1fZQoaAZHQHDuCTt9hJBoB00BAWgIR0CtN4yquKXOdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 378,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
+
"n_steps": 1500,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 70,
|
87 |
+
"n_epochs": 6,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d1c46501e0563b114cf7f1b8429280a128704da042723574b58e1d3cc8170eb
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:238e4fc0ed8e94ffa708061a6dd3bb3fbbbcd8bc65f8f3cb23985c31f0ef2d32
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 273.73244796267954, "std_reward": 16.849403264875864, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-12T16:34:00.952693"}
|