update model
Browse files- README.md +90 -0
- added_tokens.json +5 -0
- config.json +48 -0
- configuration_imp_qwen.py +202 -0
- generation_config.json +10 -0
- images/1.jpg +0 -0
- images/bird.jpg +0 -0
- images/bus.jpg +0 -0
- images/car.jpg +0 -0
- images/example1.png +0 -0
- merges.txt +0 -0
- model-00001-of-00005.safetensors +3 -0
- model-00002-of-00005.safetensors +3 -0
- model-00003-of-00005.safetensors +3 -0
- model-00004-of-00005.safetensors +3 -0
- model-00005-of-00005.safetensors +3 -0
- model.safetensors.index.json +721 -0
- modeling_imp_qwen.py +1725 -0
- special_tokens_map.json +20 -0
- tokenization_qwen2.py +345 -0
- tokenizer_config.json +57 -0
- vision_encoder.py +593 -0
- vocab.json +0 -0
README.md
CHANGED
@@ -1,3 +1,93 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
datasets:
|
5 |
+
- liuhaotian/LLaVA-Pretrain
|
6 |
+
- liuhaotian/LLaVA-Instruct-150K
|
7 |
---
|
8 |
+
# 😈 Imp
|
9 |
+
|
10 |
+
> A very small man can cast a very large shadow.
|
11 |
+
>
|
12 |
+
> ——*George R.R. Martin, A Clash of Kings*
|
13 |
+
|
14 |
+
|
15 |
+
\[Technical report (coming soon)\] [[Demo](https://xmbot.net/imp/)\] [[Github](https://github.com/MILVLG/imp)\]
|
16 |
+
|
17 |
+
## Introduction
|
18 |
+
|
19 |
+
The Imp project aims to provide a family of a strong multimodal `small` language models (MSLMs). Our `Imp-v1.5-2B-Qwen1.5` is a strong MSLM with only **2B** parameters, which is build upon a small yet powerful SLM [Qwen1.5-1.8B-Chat ](https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat)(1.8B) and a powerful visual encoder [SigLIP ](https://huggingface.co/google/siglip-so400m-patch14-384)(0.4B), and trained on the [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA) training set.
|
20 |
+
|
21 |
+
As shown in the Table below, `Imp-v1.5-2B-Qwen1.5` significantly outperforms the counterparts of similar model sizes, and even achieves slightly better performance than the strong LLaVA-7B model on various multimodal benchmarks.
|
22 |
+
|
23 |
+
We release our model weights and provide an example below to run our model . Detailed technical report and corresponding training/evaluation code will be released soon on our [GitHub repo](https://github.com/MILVLG/imp). We will persistently improve our model and release the next versions to further improve model performance :)
|
24 |
+
|
25 |
+
|
26 |
+
## How to use
|
27 |
+
|
28 |
+
|
29 |
+
**Install dependencies**
|
30 |
+
```bash
|
31 |
+
pip install transformers # latest version is ok, but we recommend v4.31.0
|
32 |
+
pip install -q pillow accelerate einops
|
33 |
+
```
|
34 |
+
|
35 |
+
You can use the following code for model inference. The format of text instruction is similar to [LLaVA](https://github.com/haotian-liu/LLaVA). A Colab page to run this example is provided [here](https://colab.research.google.com/drive/1EBYky6xIPjnlPppo2gZaiNK6gEsjXgom?usp=drive_link#scrollTo=2-VpU6QzWCVZ). Note that the example can only be run on GPUs currently.
|
36 |
+
|
37 |
+
```Python
|
38 |
+
import torch
|
39 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
40 |
+
from PIL import Image
|
41 |
+
|
42 |
+
torch.set_default_device("cuda")
|
43 |
+
|
44 |
+
#Create model
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
46 |
+
"MILVLG/Imp-v1.5-2B-Qwen1.5",
|
47 |
+
torch_dtype=torch.float16,
|
48 |
+
device_map="auto",
|
49 |
+
trust_remote_code=True)
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained("MILVLG/Imp-v1.5-2B-Qwen1.5", trust_remote_code=True)
|
51 |
+
|
52 |
+
#Set inputs
|
53 |
+
text = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat are the colors of the bus in the image? ASSISTANT:"
|
54 |
+
image = Image.open("images/bus.jpg")
|
55 |
+
|
56 |
+
input_ids = tokenizer(text, return_tensors='pt').input_ids
|
57 |
+
image_tensor = model.image_preprocess(image)
|
58 |
+
|
59 |
+
#Generate the answer
|
60 |
+
output_ids = model.generate(
|
61 |
+
input_ids,
|
62 |
+
max_new_tokens=100,
|
63 |
+
images=image_tensor,
|
64 |
+
use_cache=True)[0]
|
65 |
+
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
|
66 |
+
```
|
67 |
+
|
68 |
+
## Model evaluation
|
69 |
+
We conduct evaluation on 9 commonly-used benchmarks, including 5 academic VQA benchmarks and 4 popular MLLM benchmarks, to compare our Imp model with LLaVA (7B) and existing MSLMs of similar model sizes.
|
70 |
+
|
71 |
+
| Models | Size | VQAv2 | GQA | SQA(IMG) | TextVQA | POPE | MME(P) | MMB |MMBCN |MM-Vet|
|
72 |
+
|:--------:|:-----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|:-------:|
|
73 |
+
| [LLaVA-v1.5-lora](https://huggingface.co/liuhaotian/llava-v1.5-7b) | 7B |79.10 | 63.00| 68.40 |58.20| 86.40 | 1476.9 | 66.10 |- |30.2|
|
74 |
+
| **Imp-v1.5-2B-Qwen1.5** | 3B | **81.18** | **63.54** | **72.78**| **59.84** | **88.87**| **1446.4** | **72.94**| 46.65 |**43.3**|
|
75 |
+
|
76 |
+
## License
|
77 |
+
This project is licensed under the Apache License 2.0 - see the [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) file for details.
|
78 |
+
|
79 |
+
## About us
|
80 |
+
This project is maintained by the [MILVLG](https://github.com/MILVLG)@Hangzhou Dianzi University (HDU) led by Prof. Zhou Yu and Jun Yu, and is mainly developed by Zhenwei Shao and Xuecheng Ouyang. We hope our model may serve as a strong baseline to inspire future research on MSLM, as well as its derivative applications on mobile devices and robots.
|
81 |
+
|
82 |
+
## Citation
|
83 |
+
|
84 |
+
If you use our model or refer our work in your studies, please cite:
|
85 |
+
|
86 |
+
```bibtex
|
87 |
+
@misc{imp2024,
|
88 |
+
author = {Shao, Zhenwei and Ouyang, Xuecheng and Yu, Zhou and Yu, Jun},
|
89 |
+
title = {Imp: An Emprical Study of Multimodal Small Language Models},
|
90 |
+
year = {2024},
|
91 |
+
url = {https://huggingface.co/MILVLG/imp-v1-3b}
|
92 |
+
}
|
93 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "MILVLG/imp-qwen-v1-2b",
|
3 |
+
"architectures": [
|
4 |
+
"ImpQwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_imp_qwen.ImpQwen2Config",
|
9 |
+
"AutoModelForCausalLM": "modeling_imp_qwen.ImpQwen2ForCausalLM"
|
10 |
+
},
|
11 |
+
"bos_token_id": 151643,
|
12 |
+
"eos_token_id": 151645,
|
13 |
+
"freeze_mm_mlp_adapter": false,
|
14 |
+
"hidden_act": "silu",
|
15 |
+
"hidden_size": 2048,
|
16 |
+
"image_aspect_ratio": "square",
|
17 |
+
"image_token": "<image>",
|
18 |
+
"image_token_index": 151646,
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 5504,
|
21 |
+
"max_position_embeddings": 32768,
|
22 |
+
"max_window_layers": 21,
|
23 |
+
"mm_hidden_size": 1152,
|
24 |
+
"mm_projector_lr": 2e-05,
|
25 |
+
"mm_projector_type": "mlp2x_gelu",
|
26 |
+
"mm_use_im_patch_token": false,
|
27 |
+
"mm_use_im_start_end": false,
|
28 |
+
"mm_vision_select_feature": "patch",
|
29 |
+
"mm_vision_select_layer": -2,
|
30 |
+
"mm_vision_tower": "google/siglip-so400m-patch14-384",
|
31 |
+
"model_type": "imp_qwen2",
|
32 |
+
"num_attention_heads": 16,
|
33 |
+
"num_hidden_layers": 24,
|
34 |
+
"num_key_value_heads": 16,
|
35 |
+
"rms_norm_eps": 1e-06,
|
36 |
+
"rope_theta": 1000000.0,
|
37 |
+
"sliding_window": 32768,
|
38 |
+
"tie_word_embeddings": false,
|
39 |
+
"tokenizer_model_max_length": 2560,
|
40 |
+
"tokenizer_padding_side": "right",
|
41 |
+
"torch_dtype": "float16",
|
42 |
+
"transformers_version": "4.36.0",
|
43 |
+
"tune_mm_mlp_adapter": false,
|
44 |
+
"use_cache": true,
|
45 |
+
"use_mm_proj": true,
|
46 |
+
"use_sliding_window": false,
|
47 |
+
"vocab_size": 151936
|
48 |
+
}
|
configuration_imp_qwen.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
from typing import Optional, Union
|
4 |
+
|
5 |
+
from transformers import PretrainedConfig
|
6 |
+
from transformers.utils import logging
|
7 |
+
|
8 |
+
logger = logging.get_logger(__name__)
|
9 |
+
|
10 |
+
QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
11 |
+
"Qwen/Qwen2-7B-beta": "https://huggingface.co/Qwen/Qwen2-7B-beta/resolve/main/config.json",
|
12 |
+
}
|
13 |
+
|
14 |
+
|
15 |
+
class Qwen2Config(PretrainedConfig):
|
16 |
+
r"""
|
17 |
+
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
|
18 |
+
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
19 |
+
with the defaults will yield a similar configuration to that of
|
20 |
+
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
|
21 |
+
|
22 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
23 |
+
documentation from [`PretrainedConfig`] for more information.
|
24 |
+
|
25 |
+
|
26 |
+
Args:
|
27 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
28 |
+
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
|
29 |
+
`inputs_ids` passed when calling [`Qwen2Model`]
|
30 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
31 |
+
Dimension of the hidden representations.
|
32 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
33 |
+
Dimension of the MLP representations.
|
34 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
35 |
+
Number of hidden layers in the Transformer encoder.
|
36 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
37 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
38 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
39 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
40 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
41 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
42 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
43 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
44 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
45 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
46 |
+
The non-linear activation function (function or string) in the decoder.
|
47 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
48 |
+
The maximum sequence length that this model might ever be used with.
|
49 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
50 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
51 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
52 |
+
The epsilon used by the rms normalization layers.
|
53 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
54 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
55 |
+
relevant if `config.is_decoder=True`.
|
56 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
57 |
+
Whether the model's input and output word embeddings should be tied.
|
58 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
59 |
+
The base period of the RoPE embeddings.
|
60 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
61 |
+
Whether to use sliding window attention.
|
62 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
63 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
64 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
65 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
66 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
67 |
+
The dropout ratio for the attention probabilities.
|
68 |
+
|
69 |
+
```python
|
70 |
+
>>> from transformers import Qwen2Model, Qwen2Config
|
71 |
+
|
72 |
+
>>> # Initializing a Qwen2 style configuration
|
73 |
+
>>> configuration = Qwen2Config()
|
74 |
+
|
75 |
+
>>> # Initializing a model from the Qwen2-7B style configuration
|
76 |
+
>>> model = Qwen2Model(configuration)
|
77 |
+
|
78 |
+
>>> # Accessing the model configuration
|
79 |
+
>>> configuration = model.config
|
80 |
+
```"""
|
81 |
+
|
82 |
+
model_type = "qwen2"
|
83 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
84 |
+
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
vocab_size=151936,
|
88 |
+
hidden_size=4096,
|
89 |
+
intermediate_size=22016,
|
90 |
+
num_hidden_layers=32,
|
91 |
+
num_attention_heads=32,
|
92 |
+
num_key_value_heads=32,
|
93 |
+
hidden_act="silu",
|
94 |
+
max_position_embeddings=32768,
|
95 |
+
initializer_range=0.02,
|
96 |
+
rms_norm_eps=1e-6,
|
97 |
+
use_cache=True,
|
98 |
+
tie_word_embeddings=False,
|
99 |
+
rope_theta=10000.0,
|
100 |
+
use_sliding_window=False,
|
101 |
+
sliding_window=4096,
|
102 |
+
max_window_layers=28,
|
103 |
+
attention_dropout=0.0,
|
104 |
+
**kwargs,
|
105 |
+
):
|
106 |
+
self.vocab_size = vocab_size
|
107 |
+
self.max_position_embeddings = max_position_embeddings
|
108 |
+
self.hidden_size = hidden_size
|
109 |
+
self.intermediate_size = intermediate_size
|
110 |
+
self.num_hidden_layers = num_hidden_layers
|
111 |
+
self.num_attention_heads = num_attention_heads
|
112 |
+
self.use_sliding_window = use_sliding_window
|
113 |
+
self.sliding_window = sliding_window
|
114 |
+
self.max_window_layers = max_window_layers
|
115 |
+
|
116 |
+
# for backward compatibility
|
117 |
+
if num_key_value_heads is None:
|
118 |
+
num_key_value_heads = num_attention_heads
|
119 |
+
|
120 |
+
self.num_key_value_heads = num_key_value_heads
|
121 |
+
self.hidden_act = hidden_act
|
122 |
+
self.initializer_range = initializer_range
|
123 |
+
self.rms_norm_eps = rms_norm_eps
|
124 |
+
self.use_cache = use_cache
|
125 |
+
self.rope_theta = rope_theta
|
126 |
+
self.attention_dropout = attention_dropout
|
127 |
+
|
128 |
+
super().__init__(
|
129 |
+
tie_word_embeddings=tie_word_embeddings,
|
130 |
+
**kwargs,
|
131 |
+
)
|
132 |
+
|
133 |
+
|
134 |
+
class SiglipVisionConfig(PretrainedConfig):
|
135 |
+
|
136 |
+
model_type = "siglip_vision_model"
|
137 |
+
|
138 |
+
def __init__(
|
139 |
+
self,
|
140 |
+
hidden_size=768,
|
141 |
+
intermediate_size=3072,
|
142 |
+
num_hidden_layers=12,
|
143 |
+
num_attention_heads=12,
|
144 |
+
num_channels=3,
|
145 |
+
image_size=224,
|
146 |
+
patch_size=16,
|
147 |
+
hidden_act="gelu_pytorch_tanh",
|
148 |
+
layer_norm_eps=1e-6,
|
149 |
+
attention_dropout=0.0,
|
150 |
+
**kwargs,
|
151 |
+
):
|
152 |
+
super().__init__(**kwargs)
|
153 |
+
|
154 |
+
self.hidden_size = hidden_size
|
155 |
+
self.intermediate_size = intermediate_size
|
156 |
+
self.num_hidden_layers = num_hidden_layers
|
157 |
+
self.num_attention_heads = num_attention_heads
|
158 |
+
self.num_channels = num_channels
|
159 |
+
self.patch_size = patch_size
|
160 |
+
self.image_size = image_size
|
161 |
+
self.attention_dropout = attention_dropout
|
162 |
+
self.layer_norm_eps = layer_norm_eps
|
163 |
+
self.hidden_act = hidden_act
|
164 |
+
|
165 |
+
@classmethod
|
166 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
167 |
+
cls._set_token_in_kwargs(kwargs)
|
168 |
+
|
169 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
170 |
+
|
171 |
+
# get the vision config dict if we are loading from SiglipConfig
|
172 |
+
if config_dict.get("model_type") == "siglip":
|
173 |
+
config_dict = config_dict["vision_config"]
|
174 |
+
|
175 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
176 |
+
logger.warning(
|
177 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
178 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
179 |
+
)
|
180 |
+
|
181 |
+
return cls.from_dict(config_dict, **kwargs)
|
182 |
+
|
183 |
+
class ImpQwen2Config(Qwen2Config):
|
184 |
+
model_type = "imp_qwen2"
|
185 |
+
|
186 |
+
def __init__(self, **kwargs):
|
187 |
+
super().__init__(**kwargs)
|
188 |
+
self.image_token_index = getattr(self, "image_token_index", 50296)
|
189 |
+
self.image_token = getattr(self, "image_token", "<image>")
|
190 |
+
|
191 |
+
if not hasattr(self, "vision_tower_config") and hasattr(self, "mm_vision_tower"):
|
192 |
+
vision_tower_config = SiglipVisionConfig.from_pretrained(self.mm_vision_tower)
|
193 |
+
self.vision_tower_config = vision_tower_config.to_diff_dict()
|
194 |
+
|
195 |
+
@property
|
196 |
+
def vision_tower_cfg(self):
|
197 |
+
cfg = SiglipVisionConfig.from_dict(self.vision_tower_config)
|
198 |
+
# imp-v1 only supports `patch` feature for now w/o cls token
|
199 |
+
# cfg.mm_vision_select_feature = self.mm_vision_select_feature
|
200 |
+
cfg.mm_vision_select_layer = self.mm_vision_select_layer
|
201 |
+
cfg.mm_vision_tower = self.mm_vision_tower
|
202 |
+
return cfg
|
generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"eos_token_id": [
|
4 |
+
151645,
|
5 |
+
151643
|
6 |
+
],
|
7 |
+
"max_new_tokens": 128,
|
8 |
+
"pad_token_id": 151645,
|
9 |
+
"transformers_version": "4.36.0"
|
10 |
+
}
|
images/1.jpg
ADDED
images/bird.jpg
ADDED
images/bus.jpg
ADDED
images/car.jpg
ADDED
images/example1.png
ADDED
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9c1338630a4744421932156c88c3163ecad76e033325e2e4cb7ffd9e70a76b7
|
3 |
+
size 1004614672
|
model-00002-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb3e8b5ad6fd22cbb34f6cd826f3dd8f74ca56ea1aa588640511a222e008f34e
|
3 |
+
size 1012094024
|
model-00003-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1fbdd7955039dcd0c747d8c8a5786f91996bf1f8de9b1d8f3753d83a702cb40
|
3 |
+
size 1012094104
|
model-00004-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2e2a5cfe5c95e606d05222294fbbc0c9d529bfef90452b479c236720a0a6f4d
|
3 |
+
size 831228328
|
model-00005-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c21c4014fd36ca937a4571b8c43ba063671ed99fcd2f7e4328bdde345dfd6dad
|
3 |
+
size 622329984
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,721 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 4482263616
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00005-of-00005.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00005.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
212 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
213 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
214 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
215 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
216 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
217 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
|
218 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
219 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
220 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
|
221 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
222 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
224 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
225 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
226 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
227 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
228 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
229 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
|
230 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
231 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
232 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
|
233 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
234 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
|
235 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
236 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
237 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
238 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
239 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
240 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
241 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
|
242 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
243 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
244 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
|
245 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
246 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
|
247 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
248 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
249 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
250 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
251 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
252 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
253 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
|
254 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
255 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
256 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
|
257 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
258 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
|
259 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
260 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
261 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
262 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
263 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
264 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
265 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
|
266 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
267 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
268 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
|
269 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
270 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
|
271 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
272 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
273 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
274 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
275 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
276 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
277 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
|
278 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
279 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
280 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
|
281 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
282 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
|
283 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
284 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
285 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
286 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
287 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
288 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
289 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
|
290 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
291 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
292 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
|
293 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
294 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
296 |
+
"model.mm_projector.0.bias": "model-00004-of-00005.safetensors",
|
297 |
+
"model.mm_projector.0.weight": "model-00004-of-00005.safetensors",
|
298 |
+
"model.mm_projector.2.bias": "model-00004-of-00005.safetensors",
|
299 |
+
"model.mm_projector.2.weight": "model-00004-of-00005.safetensors",
|
300 |
+
"model.norm.weight": "model-00004-of-00005.safetensors",
|
301 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00004-of-00005.safetensors",
|
302 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00004-of-00005.safetensors",
|
303 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00004-of-00005.safetensors",
|
304 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
305 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
306 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
307 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
308 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
309 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
310 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
311 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
312 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
313 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
314 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
315 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
316 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
317 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
318 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
319 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
320 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
321 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
322 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
323 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
324 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
325 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
326 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
327 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
328 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
329 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
330 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
331 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
332 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
333 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
334 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
335 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
336 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
337 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
338 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
339 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
340 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
341 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
342 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
343 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
344 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
345 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
346 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
347 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
348 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
349 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
350 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
351 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
352 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
353 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
354 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
355 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
356 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
357 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
358 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
359 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
360 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
361 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
362 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
363 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
364 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
365 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
366 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
367 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
368 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
369 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
370 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
371 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
372 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
373 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
374 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
375 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
376 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
377 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
378 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
379 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
380 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
381 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
382 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
383 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
384 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
385 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
386 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
387 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
388 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
389 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
390 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
391 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
392 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
393 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
394 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
395 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
396 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
397 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
398 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
399 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
400 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
401 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
402 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
403 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
404 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
405 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
406 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
407 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
408 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
409 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
410 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
411 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
412 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
413 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
414 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
415 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
416 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
417 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
418 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
419 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
420 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
421 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
422 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
423 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
424 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
425 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
426 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
427 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
428 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
429 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
430 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
431 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
432 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
433 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
434 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
435 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
436 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
437 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
438 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
439 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
440 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
441 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
442 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
443 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
444 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
445 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
446 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
447 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
448 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
449 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
450 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
451 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
452 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
453 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
454 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
455 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
456 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
457 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
458 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
459 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
460 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
461 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
462 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
463 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
464 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
465 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
466 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
467 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
468 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
469 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
470 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
471 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
472 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
473 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
474 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
475 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
476 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
477 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
478 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
479 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
480 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
481 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
482 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
483 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
484 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
485 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
486 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
487 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
488 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
489 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
490 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
491 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
492 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
493 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
494 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
495 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
496 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
497 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
498 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
499 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
500 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
501 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
502 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
503 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
504 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
505 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
506 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
507 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
508 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
509 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
510 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
511 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
512 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
513 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
514 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
515 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
516 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
517 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
518 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
519 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
520 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
521 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
522 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
523 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
524 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
525 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
526 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
527 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
528 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
529 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
530 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
531 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
532 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
533 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
534 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
535 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
536 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
537 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
538 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
539 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
540 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
541 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
542 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
543 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
544 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
545 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
546 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
547 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
548 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
549 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
550 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
551 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
552 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
553 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
554 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
555 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
556 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
557 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
558 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
559 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
560 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
561 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
562 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
563 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
564 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
565 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
566 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
567 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
568 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
569 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
570 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
571 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
572 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
573 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
574 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
575 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
576 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
577 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
578 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
579 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
580 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
581 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
582 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
583 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
584 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
585 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
586 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
587 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
588 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
589 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
590 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
591 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
592 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
593 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
594 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
595 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
596 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
597 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
598 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
599 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
600 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
601 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
602 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
603 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
604 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
605 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
606 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
607 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
608 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
609 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
610 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
611 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
612 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
613 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
614 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
615 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
616 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
617 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
618 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
619 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
620 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
621 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
622 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
623 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
624 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
625 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
626 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
627 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
628 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
629 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
630 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
631 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
632 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
633 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
634 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
635 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
636 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
637 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
638 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
639 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
640 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
641 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
642 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
643 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
644 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
645 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
646 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
647 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
648 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
649 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
650 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
651 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
652 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
653 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
654 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
655 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
656 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
657 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
658 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
659 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
660 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
661 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
662 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
663 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
664 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
665 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
666 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
667 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
668 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
669 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
670 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
671 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
672 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
673 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
674 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
675 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
676 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
677 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
678 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
679 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
680 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
681 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
682 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
683 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
684 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
685 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
686 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
687 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
688 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
689 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
690 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
691 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
692 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
693 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
694 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
695 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
696 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
697 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
698 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
699 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
700 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
701 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
702 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
703 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
704 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00004-of-00005.safetensors",
|
705 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00004-of-00005.safetensors",
|
706 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00004-of-00005.safetensors",
|
707 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00004-of-00005.safetensors",
|
708 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00004-of-00005.safetensors",
|
709 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00004-of-00005.safetensors",
|
710 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00004-of-00005.safetensors",
|
711 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00004-of-00005.safetensors",
|
712 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
|
713 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
714 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00004-of-00005.safetensors",
|
715 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00004-of-00005.safetensors",
|
716 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
|
717 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
718 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
|
719 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00004-of-00005.safetensors"
|
720 |
+
}
|
721 |
+
}
|
modeling_imp_qwen.py
ADDED
@@ -0,0 +1,1725 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
|
3 |
+
# from transformers import PretrainedConfig, PreTrainedModel
|
4 |
+
""" PyTorch Qwen2 model."""
|
5 |
+
import inspect
|
6 |
+
import math
|
7 |
+
import warnings
|
8 |
+
from typing import List, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import os
|
11 |
+
import re
|
12 |
+
import torch
|
13 |
+
import torch.nn.functional as F
|
14 |
+
import torch.utils.checkpoint
|
15 |
+
from torch import nn
|
16 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
17 |
+
from transformers import AutoConfig, AutoModelForCausalLM
|
18 |
+
|
19 |
+
from transformers.activations import ACT2FN
|
20 |
+
from transformers.cache_utils import Cache, DynamicCache
|
21 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
|
22 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
23 |
+
from transformers.modeling_utils import PreTrainedModel
|
24 |
+
from transformers.utils import (
|
25 |
+
add_start_docstrings,
|
26 |
+
add_start_docstrings_to_model_forward,
|
27 |
+
is_flash_attn_2_available,
|
28 |
+
is_flash_attn_greater_or_equal_2_10,
|
29 |
+
logging,
|
30 |
+
replace_return_docstrings,
|
31 |
+
)
|
32 |
+
from .configuration_imp_qwen import Qwen2Config,ImpQwen2Config
|
33 |
+
from .vision_encoder import VisionTower
|
34 |
+
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta"
|
40 |
+
_CONFIG_FOR_DOC = "Qwen2Config"
|
41 |
+
|
42 |
+
QWEN2_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
43 |
+
"Qwen/Qwen2-7B-beta",
|
44 |
+
# See all Qwen2 models at https://huggingface.co/models?filter=qwen2
|
45 |
+
]
|
46 |
+
|
47 |
+
|
48 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
49 |
+
def _get_unpad_data(attention_mask):
|
50 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
51 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
52 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
53 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
54 |
+
return (
|
55 |
+
indices,
|
56 |
+
cu_seqlens,
|
57 |
+
max_seqlen_in_batch,
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2
|
62 |
+
class Qwen2RMSNorm(nn.Module):
|
63 |
+
def __init__(self, hidden_size, eps=1e-6):
|
64 |
+
"""
|
65 |
+
Qwen2RMSNorm is equivalent to T5LayerNorm
|
66 |
+
"""
|
67 |
+
super().__init__()
|
68 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
69 |
+
self.variance_epsilon = eps
|
70 |
+
|
71 |
+
def forward(self, hidden_states):
|
72 |
+
input_dtype = hidden_states.dtype
|
73 |
+
hidden_states = hidden_states.to(torch.float32)
|
74 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
75 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
76 |
+
return self.weight * hidden_states.to(input_dtype)
|
77 |
+
|
78 |
+
|
79 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Qwen2
|
80 |
+
class Qwen2RotaryEmbedding(nn.Module):
|
81 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
82 |
+
super().__init__()
|
83 |
+
|
84 |
+
self.dim = dim
|
85 |
+
self.max_position_embeddings = max_position_embeddings
|
86 |
+
self.base = base
|
87 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
88 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
89 |
+
|
90 |
+
# Build here to make `torch.jit.trace` work.
|
91 |
+
self._set_cos_sin_cache(
|
92 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
93 |
+
)
|
94 |
+
|
95 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
96 |
+
self.max_seq_len_cached = seq_len
|
97 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
98 |
+
|
99 |
+
freqs = torch.outer(t, self.inv_freq)
|
100 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
101 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
102 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
103 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
104 |
+
|
105 |
+
def forward(self, x, seq_len=None):
|
106 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
107 |
+
if seq_len > self.max_seq_len_cached:
|
108 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
109 |
+
|
110 |
+
return (
|
111 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
112 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
113 |
+
)
|
114 |
+
|
115 |
+
|
116 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
117 |
+
def rotate_half(x):
|
118 |
+
"""Rotates half the hidden dims of the input."""
|
119 |
+
x1 = x[..., : x.shape[-1] // 2]
|
120 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
121 |
+
return torch.cat((-x2, x1), dim=-1)
|
122 |
+
|
123 |
+
|
124 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
125 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
126 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
q (`torch.Tensor`): The query tensor.
|
130 |
+
k (`torch.Tensor`): The key tensor.
|
131 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
132 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
133 |
+
position_ids (`torch.Tensor`):
|
134 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
135 |
+
used to pass offsetted position ids when working with a KV-cache.
|
136 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
137 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
138 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
139 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
140 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
141 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
142 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
143 |
+
Returns:
|
144 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
145 |
+
"""
|
146 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
147 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
148 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
149 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
150 |
+
return q_embed, k_embed
|
151 |
+
|
152 |
+
|
153 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2
|
154 |
+
class Qwen2MLP(nn.Module):
|
155 |
+
def __init__(self, config):
|
156 |
+
super().__init__()
|
157 |
+
self.config = config
|
158 |
+
self.hidden_size = config.hidden_size
|
159 |
+
self.intermediate_size = config.intermediate_size
|
160 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
161 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
162 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
163 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
164 |
+
|
165 |
+
def forward(self, x):
|
166 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
167 |
+
|
168 |
+
|
169 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
170 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
171 |
+
"""
|
172 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
173 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
174 |
+
"""
|
175 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
176 |
+
if n_rep == 1:
|
177 |
+
return hidden_states
|
178 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
179 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
180 |
+
|
181 |
+
|
182 |
+
class Qwen2Attention(nn.Module):
|
183 |
+
"""
|
184 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
185 |
+
and "Generating Long Sequences with Sparse Transformers".
|
186 |
+
"""
|
187 |
+
|
188 |
+
def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None):
|
189 |
+
super().__init__()
|
190 |
+
self.config = config
|
191 |
+
self.layer_idx = layer_idx
|
192 |
+
if layer_idx is None:
|
193 |
+
logger.warning_once(
|
194 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
195 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
196 |
+
"when creating this class."
|
197 |
+
)
|
198 |
+
|
199 |
+
self.hidden_size = config.hidden_size
|
200 |
+
self.num_heads = config.num_attention_heads
|
201 |
+
self.head_dim = self.hidden_size // self.num_heads
|
202 |
+
self.num_key_value_heads = config.num_key_value_heads
|
203 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
204 |
+
self.max_position_embeddings = config.max_position_embeddings
|
205 |
+
self.rope_theta = config.rope_theta
|
206 |
+
self.is_causal = True
|
207 |
+
self.attention_dropout = config.attention_dropout
|
208 |
+
|
209 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
210 |
+
raise ValueError(
|
211 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
212 |
+
f" and `num_heads`: {self.num_heads})."
|
213 |
+
)
|
214 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
215 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
216 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
217 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
218 |
+
|
219 |
+
self.rotary_emb = Qwen2RotaryEmbedding(
|
220 |
+
self.head_dim,
|
221 |
+
max_position_embeddings=self.max_position_embeddings,
|
222 |
+
base=self.rope_theta,
|
223 |
+
)
|
224 |
+
|
225 |
+
def forward(
|
226 |
+
self,
|
227 |
+
hidden_states: torch.Tensor,
|
228 |
+
attention_mask: Optional[torch.Tensor] = None,
|
229 |
+
position_ids: Optional[torch.LongTensor] = None,
|
230 |
+
past_key_value: Optional[Cache] = None,
|
231 |
+
output_attentions: bool = False,
|
232 |
+
use_cache: bool = False,
|
233 |
+
**kwargs,
|
234 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
235 |
+
if "padding_mask" in kwargs:
|
236 |
+
warnings.warn(
|
237 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
238 |
+
)
|
239 |
+
bsz, q_len, _ = hidden_states.size()
|
240 |
+
|
241 |
+
query_states = self.q_proj(hidden_states)
|
242 |
+
key_states = self.k_proj(hidden_states)
|
243 |
+
value_states = self.v_proj(hidden_states)
|
244 |
+
|
245 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
246 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
247 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
248 |
+
|
249 |
+
kv_seq_len = key_states.shape[-2]
|
250 |
+
if past_key_value is not None:
|
251 |
+
if self.layer_idx is None:
|
252 |
+
raise ValueError(
|
253 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
254 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
255 |
+
"with a layer index."
|
256 |
+
)
|
257 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
258 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
259 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
260 |
+
|
261 |
+
if past_key_value is not None:
|
262 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
263 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
264 |
+
|
265 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
266 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
267 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
268 |
+
|
269 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
270 |
+
|
271 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
272 |
+
raise ValueError(
|
273 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
274 |
+
f" {attn_weights.size()}"
|
275 |
+
)
|
276 |
+
|
277 |
+
if attention_mask is not None:
|
278 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
279 |
+
raise ValueError(
|
280 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
281 |
+
)
|
282 |
+
|
283 |
+
attn_weights = attn_weights + attention_mask
|
284 |
+
|
285 |
+
# upcast attention to fp32
|
286 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
287 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
288 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
289 |
+
|
290 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
291 |
+
raise ValueError(
|
292 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
293 |
+
f" {attn_output.size()}"
|
294 |
+
)
|
295 |
+
|
296 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
297 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
298 |
+
|
299 |
+
attn_output = self.o_proj(attn_output)
|
300 |
+
|
301 |
+
if not output_attentions:
|
302 |
+
attn_weights = None
|
303 |
+
|
304 |
+
return attn_output, attn_weights, past_key_value
|
305 |
+
|
306 |
+
|
307 |
+
class Qwen2FlashAttention2(Qwen2Attention):
|
308 |
+
"""
|
309 |
+
Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention`
|
310 |
+
as the weights of the module stays untouched. The only required change would be on the forward pass
|
311 |
+
where it needs to correctly call the public API of flash attention and deal with padding tokens
|
312 |
+
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
|
313 |
+
config.max_window_layers layers.
|
314 |
+
"""
|
315 |
+
|
316 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
317 |
+
def __init__(self, *args, **kwargs):
|
318 |
+
super().__init__(*args, **kwargs)
|
319 |
+
|
320 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
321 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
322 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
323 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
324 |
+
|
325 |
+
def forward(
|
326 |
+
self,
|
327 |
+
hidden_states: torch.Tensor,
|
328 |
+
attention_mask: Optional[torch.Tensor] = None,
|
329 |
+
position_ids: Optional[torch.LongTensor] = None,
|
330 |
+
past_key_value: Optional[Cache] = None,
|
331 |
+
output_attentions: bool = False,
|
332 |
+
use_cache: bool = False,
|
333 |
+
**kwargs,
|
334 |
+
):
|
335 |
+
if "padding_mask" in kwargs:
|
336 |
+
warnings.warn(
|
337 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
338 |
+
)
|
339 |
+
|
340 |
+
# overwrite attention_mask with padding_mask
|
341 |
+
attention_mask = kwargs.pop("padding_mask")
|
342 |
+
bsz, q_len, _ = hidden_states.size()
|
343 |
+
|
344 |
+
query_states = self.q_proj(hidden_states)
|
345 |
+
key_states = self.k_proj(hidden_states)
|
346 |
+
value_states = self.v_proj(hidden_states)
|
347 |
+
|
348 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
349 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
350 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
351 |
+
|
352 |
+
kv_seq_len = key_states.shape[-2]
|
353 |
+
if past_key_value is not None:
|
354 |
+
if self.layer_idx is None:
|
355 |
+
raise ValueError(
|
356 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
357 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
358 |
+
"with a layer index."
|
359 |
+
)
|
360 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
361 |
+
|
362 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
363 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
364 |
+
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
365 |
+
|
366 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
367 |
+
|
368 |
+
use_sliding_windows = (
|
369 |
+
_flash_supports_window_size
|
370 |
+
and getattr(self.config, "sliding_window", None) is not None
|
371 |
+
and kv_seq_len > self.config.sliding_window
|
372 |
+
and self.config.use_sliding_window
|
373 |
+
)
|
374 |
+
|
375 |
+
if not _flash_supports_window_size:
|
376 |
+
logger.warning_once(
|
377 |
+
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
|
378 |
+
" make sure to upgrade flash-attn library."
|
379 |
+
)
|
380 |
+
|
381 |
+
if past_key_value is not None:
|
382 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
383 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
384 |
+
if (
|
385 |
+
getattr(self.config, "sliding_window", None) is not None
|
386 |
+
and kv_seq_len > self.config.sliding_window
|
387 |
+
and cache_has_contents
|
388 |
+
):
|
389 |
+
slicing_tokens = 1 - self.config.sliding_window
|
390 |
+
|
391 |
+
past_key = past_key_value[self.layer_idx][0]
|
392 |
+
past_value = past_key_value[self.layer_idx][1]
|
393 |
+
|
394 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
395 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
396 |
+
|
397 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
398 |
+
raise ValueError(
|
399 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
400 |
+
f" {past_key.shape}"
|
401 |
+
)
|
402 |
+
|
403 |
+
if attention_mask is not None:
|
404 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
405 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
406 |
+
|
407 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
408 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
409 |
+
|
410 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
411 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
412 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
413 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
414 |
+
|
415 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
416 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
417 |
+
# cast them back in float16 just to be sure everything works as expected.
|
418 |
+
input_dtype = query_states.dtype
|
419 |
+
if input_dtype == torch.float32:
|
420 |
+
if torch.is_autocast_enabled():
|
421 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
422 |
+
# Handle the case where the model is quantized
|
423 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
424 |
+
target_dtype = self.config._pre_quantization_dtype
|
425 |
+
else:
|
426 |
+
target_dtype = self.q_proj.weight.dtype
|
427 |
+
|
428 |
+
logger.warning_once(
|
429 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
430 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
431 |
+
f" {target_dtype}."
|
432 |
+
)
|
433 |
+
|
434 |
+
query_states = query_states.to(target_dtype)
|
435 |
+
key_states = key_states.to(target_dtype)
|
436 |
+
value_states = value_states.to(target_dtype)
|
437 |
+
|
438 |
+
# Reashape to the expected shape for Flash Attention
|
439 |
+
query_states = query_states.transpose(1, 2)
|
440 |
+
key_states = key_states.transpose(1, 2)
|
441 |
+
value_states = value_states.transpose(1, 2)
|
442 |
+
|
443 |
+
attn_output = self._flash_attention_forward(
|
444 |
+
query_states,
|
445 |
+
key_states,
|
446 |
+
value_states,
|
447 |
+
attention_mask,
|
448 |
+
q_len,
|
449 |
+
dropout=dropout_rate,
|
450 |
+
use_sliding_windows=use_sliding_windows,
|
451 |
+
)
|
452 |
+
|
453 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
454 |
+
attn_output = self.o_proj(attn_output)
|
455 |
+
|
456 |
+
if not output_attentions:
|
457 |
+
attn_weights = None
|
458 |
+
|
459 |
+
return attn_output, attn_weights, past_key_value
|
460 |
+
|
461 |
+
def _flash_attention_forward(
|
462 |
+
self,
|
463 |
+
query_states,
|
464 |
+
key_states,
|
465 |
+
value_states,
|
466 |
+
attention_mask,
|
467 |
+
query_length,
|
468 |
+
dropout=0.0,
|
469 |
+
softmax_scale=None,
|
470 |
+
use_sliding_windows=False,
|
471 |
+
):
|
472 |
+
"""
|
473 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
474 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
475 |
+
|
476 |
+
Args:
|
477 |
+
query_states (`torch.Tensor`):
|
478 |
+
Input query states to be passed to Flash Attention API
|
479 |
+
key_states (`torch.Tensor`):
|
480 |
+
Input key states to be passed to Flash Attention API
|
481 |
+
value_states (`torch.Tensor`):
|
482 |
+
Input value states to be passed to Flash Attention API
|
483 |
+
attention_mask (`torch.Tensor`):
|
484 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
485 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
486 |
+
dropout (`int`, *optional*):
|
487 |
+
Attention dropout
|
488 |
+
softmax_scale (`float`, *optional*):
|
489 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
490 |
+
use_sliding_windows (`bool`, *optional*):
|
491 |
+
Whether to activate sliding window attention.
|
492 |
+
"""
|
493 |
+
if not self._flash_attn_uses_top_left_mask:
|
494 |
+
causal = self.is_causal
|
495 |
+
else:
|
496 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
497 |
+
causal = self.is_causal and query_length != 1
|
498 |
+
|
499 |
+
# Decide whether to use SWA or not by layer index.
|
500 |
+
if use_sliding_windows and self.layer_idx >= self.config.max_window_layers:
|
501 |
+
use_sliding_windows = False
|
502 |
+
|
503 |
+
# Contains at least one padding token in the sequence
|
504 |
+
if attention_mask is not None:
|
505 |
+
batch_size = query_states.shape[0]
|
506 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
507 |
+
query_states, key_states, value_states, attention_mask, query_length
|
508 |
+
)
|
509 |
+
|
510 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
511 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
512 |
+
|
513 |
+
if not use_sliding_windows:
|
514 |
+
attn_output_unpad = flash_attn_varlen_func(
|
515 |
+
query_states,
|
516 |
+
key_states,
|
517 |
+
value_states,
|
518 |
+
cu_seqlens_q=cu_seqlens_q,
|
519 |
+
cu_seqlens_k=cu_seqlens_k,
|
520 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
521 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
522 |
+
dropout_p=dropout,
|
523 |
+
softmax_scale=softmax_scale,
|
524 |
+
causal=causal,
|
525 |
+
)
|
526 |
+
else:
|
527 |
+
attn_output_unpad = flash_attn_varlen_func(
|
528 |
+
query_states,
|
529 |
+
key_states,
|
530 |
+
value_states,
|
531 |
+
cu_seqlens_q=cu_seqlens_q,
|
532 |
+
cu_seqlens_k=cu_seqlens_k,
|
533 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
534 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
535 |
+
dropout_p=dropout,
|
536 |
+
softmax_scale=softmax_scale,
|
537 |
+
causal=causal,
|
538 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
539 |
+
)
|
540 |
+
|
541 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
542 |
+
else:
|
543 |
+
if not use_sliding_windows:
|
544 |
+
attn_output = flash_attn_func(
|
545 |
+
query_states,
|
546 |
+
key_states,
|
547 |
+
value_states,
|
548 |
+
dropout,
|
549 |
+
softmax_scale=softmax_scale,
|
550 |
+
causal=causal,
|
551 |
+
)
|
552 |
+
else:
|
553 |
+
attn_output = flash_attn_func(
|
554 |
+
query_states,
|
555 |
+
key_states,
|
556 |
+
value_states,
|
557 |
+
dropout,
|
558 |
+
softmax_scale=softmax_scale,
|
559 |
+
causal=causal,
|
560 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
561 |
+
)
|
562 |
+
|
563 |
+
return attn_output
|
564 |
+
|
565 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
|
566 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
567 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
568 |
+
|
569 |
+
# On the first iteration we need to properly re-create the padding mask
|
570 |
+
# by slicing it on the proper place
|
571 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
572 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
573 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
574 |
+
|
575 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
576 |
+
|
577 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
578 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
579 |
+
|
580 |
+
if query_length == kv_seq_len:
|
581 |
+
query_layer = index_first_axis(
|
582 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
583 |
+
)
|
584 |
+
cu_seqlens_q = cu_seqlens_k
|
585 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
586 |
+
indices_q = indices_k
|
587 |
+
elif query_length == 1:
|
588 |
+
max_seqlen_in_batch_q = 1
|
589 |
+
cu_seqlens_q = torch.arange(
|
590 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
591 |
+
) # There is a memcpy here, that is very bad.
|
592 |
+
indices_q = cu_seqlens_q[:-1]
|
593 |
+
query_layer = query_layer.squeeze(1)
|
594 |
+
else:
|
595 |
+
# The -q_len: slice assumes left padding.
|
596 |
+
attention_mask = attention_mask[:, -query_length:]
|
597 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
598 |
+
|
599 |
+
return (
|
600 |
+
query_layer,
|
601 |
+
key_layer,
|
602 |
+
value_layer,
|
603 |
+
indices_q,
|
604 |
+
(cu_seqlens_q, cu_seqlens_k),
|
605 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
606 |
+
)
|
607 |
+
|
608 |
+
|
609 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Qwen2
|
610 |
+
class Qwen2SdpaAttention(Qwen2Attention):
|
611 |
+
"""
|
612 |
+
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
613 |
+
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
614 |
+
SDPA API.
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Adapted from Qwen2Attention.forward
|
618 |
+
def forward(
|
619 |
+
self,
|
620 |
+
hidden_states: torch.Tensor,
|
621 |
+
attention_mask: Optional[torch.Tensor] = None,
|
622 |
+
position_ids: Optional[torch.LongTensor] = None,
|
623 |
+
past_key_value: Optional[Cache] = None,
|
624 |
+
output_attentions: bool = False,
|
625 |
+
use_cache: bool = False,
|
626 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
627 |
+
if output_attentions:
|
628 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
629 |
+
logger.warning_once(
|
630 |
+
"Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
631 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
632 |
+
)
|
633 |
+
return super().forward(
|
634 |
+
hidden_states=hidden_states,
|
635 |
+
attention_mask=attention_mask,
|
636 |
+
position_ids=position_ids,
|
637 |
+
past_key_value=past_key_value,
|
638 |
+
output_attentions=output_attentions,
|
639 |
+
use_cache=use_cache,
|
640 |
+
)
|
641 |
+
|
642 |
+
bsz, q_len, _ = hidden_states.size()
|
643 |
+
|
644 |
+
query_states = self.q_proj(hidden_states)
|
645 |
+
key_states = self.k_proj(hidden_states)
|
646 |
+
value_states = self.v_proj(hidden_states)
|
647 |
+
|
648 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
649 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
650 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
651 |
+
|
652 |
+
kv_seq_len = key_states.shape[-2]
|
653 |
+
if past_key_value is not None:
|
654 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
655 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
656 |
+
|
657 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
658 |
+
|
659 |
+
if past_key_value is not None:
|
660 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
661 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
662 |
+
|
663 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
664 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
665 |
+
|
666 |
+
if attention_mask is not None:
|
667 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
668 |
+
raise ValueError(
|
669 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
670 |
+
)
|
671 |
+
|
672 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
673 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
674 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
675 |
+
query_states = query_states.contiguous()
|
676 |
+
key_states = key_states.contiguous()
|
677 |
+
value_states = value_states.contiguous()
|
678 |
+
|
679 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
680 |
+
query_states,
|
681 |
+
key_states,
|
682 |
+
value_states,
|
683 |
+
attn_mask=attention_mask,
|
684 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
685 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
686 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
687 |
+
)
|
688 |
+
|
689 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
690 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
691 |
+
|
692 |
+
attn_output = self.o_proj(attn_output)
|
693 |
+
|
694 |
+
return attn_output, None, past_key_value
|
695 |
+
|
696 |
+
|
697 |
+
QWEN2_ATTENTION_CLASSES = {
|
698 |
+
"eager": Qwen2Attention,
|
699 |
+
"flash_attention_2": Qwen2FlashAttention2,
|
700 |
+
"sdpa": Qwen2SdpaAttention,
|
701 |
+
}
|
702 |
+
|
703 |
+
|
704 |
+
class Qwen2DecoderLayer(nn.Module):
|
705 |
+
def __init__(self, config: Qwen2Config, layer_idx: int):
|
706 |
+
super().__init__()
|
707 |
+
self.hidden_size = config.hidden_size
|
708 |
+
|
709 |
+
if config.use_sliding_window and config._attn_implementation != "flash_attention_2":
|
710 |
+
logger.warning_once(
|
711 |
+
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
712 |
+
"unexpected results may be encountered."
|
713 |
+
)
|
714 |
+
self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
715 |
+
|
716 |
+
self.mlp = Qwen2MLP(config)
|
717 |
+
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
718 |
+
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
719 |
+
|
720 |
+
def forward(
|
721 |
+
self,
|
722 |
+
hidden_states: torch.Tensor,
|
723 |
+
attention_mask: Optional[torch.Tensor] = None,
|
724 |
+
position_ids: Optional[torch.LongTensor] = None,
|
725 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
726 |
+
output_attentions: Optional[bool] = False,
|
727 |
+
use_cache: Optional[bool] = False,
|
728 |
+
**kwargs,
|
729 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
730 |
+
if "padding_mask" in kwargs:
|
731 |
+
warnings.warn(
|
732 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
733 |
+
"Please make sure use `attention_mask` instead.`"
|
734 |
+
)
|
735 |
+
"""
|
736 |
+
Args:
|
737 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
738 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
739 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
740 |
+
output_attentions (`bool`, *optional*):
|
741 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
742 |
+
returned tensors for more detail.
|
743 |
+
use_cache (`bool`, *optional*):
|
744 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
745 |
+
(see `past_key_values`).
|
746 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
747 |
+
"""
|
748 |
+
|
749 |
+
residual = hidden_states
|
750 |
+
|
751 |
+
hidden_states = self.input_layernorm(hidden_states)
|
752 |
+
|
753 |
+
# Self Attention
|
754 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
755 |
+
hidden_states=hidden_states,
|
756 |
+
attention_mask=attention_mask,
|
757 |
+
position_ids=position_ids,
|
758 |
+
past_key_value=past_key_value,
|
759 |
+
output_attentions=output_attentions,
|
760 |
+
use_cache=use_cache,
|
761 |
+
)
|
762 |
+
hidden_states = residual + hidden_states
|
763 |
+
|
764 |
+
# Fully Connected
|
765 |
+
residual = hidden_states
|
766 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
767 |
+
hidden_states = self.mlp(hidden_states)
|
768 |
+
hidden_states = residual + hidden_states
|
769 |
+
|
770 |
+
outputs = (hidden_states,)
|
771 |
+
|
772 |
+
if output_attentions:
|
773 |
+
outputs += (self_attn_weights,)
|
774 |
+
|
775 |
+
if use_cache:
|
776 |
+
outputs += (present_key_value,)
|
777 |
+
|
778 |
+
return outputs
|
779 |
+
|
780 |
+
|
781 |
+
QWEN2_START_DOCSTRING = r"""
|
782 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
783 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
784 |
+
etc.)
|
785 |
+
|
786 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
787 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
788 |
+
and behavior.
|
789 |
+
|
790 |
+
Parameters:
|
791 |
+
config ([`Qwen2Config`]):
|
792 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
793 |
+
load the weights associated with the model, only the configuration. Check out the
|
794 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
795 |
+
"""
|
796 |
+
|
797 |
+
|
798 |
+
@add_start_docstrings(
|
799 |
+
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
800 |
+
QWEN2_START_DOCSTRING,
|
801 |
+
)
|
802 |
+
class Qwen2PreTrainedModel(PreTrainedModel):
|
803 |
+
config_class = Qwen2Config
|
804 |
+
base_model_prefix = "model"
|
805 |
+
supports_gradient_checkpointing = True
|
806 |
+
_no_split_modules = ["Qwen2DecoderLayer"]
|
807 |
+
_skip_keys_device_placement = "past_key_values"
|
808 |
+
_supports_flash_attn_2 = True
|
809 |
+
_supports_sdpa = True
|
810 |
+
_supports_cache_class = True
|
811 |
+
|
812 |
+
def _init_weights(self, module):
|
813 |
+
std = self.config.initializer_range
|
814 |
+
if isinstance(module, nn.Linear):
|
815 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
816 |
+
if module.bias is not None:
|
817 |
+
module.bias.data.zero_()
|
818 |
+
elif isinstance(module, nn.Embedding):
|
819 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
820 |
+
if module.padding_idx is not None:
|
821 |
+
module.weight.data[module.padding_idx].zero_()
|
822 |
+
|
823 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
824 |
+
if isinstance(module, Qwen2Model):
|
825 |
+
module.gradient_checkpointing = value
|
826 |
+
|
827 |
+
|
828 |
+
QWEN2_INPUTS_DOCSTRING = r"""
|
829 |
+
Args:
|
830 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
831 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
832 |
+
it.
|
833 |
+
|
834 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
835 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
836 |
+
|
837 |
+
[What are input IDs?](../glossary#input-ids)
|
838 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
839 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
840 |
+
|
841 |
+
- 1 for tokens that are **not masked**,
|
842 |
+
- 0 for tokens that are **masked**.
|
843 |
+
|
844 |
+
[What are attention masks?](../glossary#attention-mask)
|
845 |
+
|
846 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
847 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
848 |
+
|
849 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
850 |
+
`past_key_values`).
|
851 |
+
|
852 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
853 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
854 |
+
information on the default strategy.
|
855 |
+
|
856 |
+
- 1 indicates the head is **not masked**,
|
857 |
+
- 0 indicates the head is **masked**.
|
858 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
859 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
860 |
+
config.n_positions - 1]`.
|
861 |
+
|
862 |
+
[What are position IDs?](../glossary#position-ids)
|
863 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
864 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
865 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
866 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
867 |
+
|
868 |
+
Two formats are allowed:
|
869 |
+
- a [`~cache_utils.Cache`] instance;
|
870 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
871 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
872 |
+
cache format.
|
873 |
+
|
874 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
875 |
+
legacy cache format will be returned.
|
876 |
+
|
877 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
878 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
879 |
+
of shape `(batch_size, sequence_length)`.
|
880 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
881 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
882 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
883 |
+
model's internal embedding lookup matrix.
|
884 |
+
use_cache (`bool`, *optional*):
|
885 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
886 |
+
`past_key_values`).
|
887 |
+
output_attentions (`bool`, *optional*):
|
888 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
889 |
+
tensors for more detail.
|
890 |
+
output_hidden_states (`bool`, *optional*):
|
891 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
892 |
+
more detail.
|
893 |
+
return_dict (`bool`, *optional*):
|
894 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
895 |
+
"""
|
896 |
+
|
897 |
+
@add_start_docstrings(
|
898 |
+
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
899 |
+
QWEN2_START_DOCSTRING,
|
900 |
+
)
|
901 |
+
class Qwen2Model(Qwen2PreTrainedModel):
|
902 |
+
"""
|
903 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
|
904 |
+
|
905 |
+
Args:
|
906 |
+
config: Qwen2Config
|
907 |
+
"""
|
908 |
+
|
909 |
+
def __init__(self, config: Qwen2Config):
|
910 |
+
super().__init__(config)
|
911 |
+
self.padding_idx = config.pad_token_id
|
912 |
+
self.vocab_size = config.vocab_size
|
913 |
+
|
914 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
915 |
+
self.layers = nn.ModuleList(
|
916 |
+
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
917 |
+
)
|
918 |
+
self._attn_implementation = config._attn_implementation
|
919 |
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
920 |
+
|
921 |
+
self.gradient_checkpointing = False
|
922 |
+
# Initialize weights and apply final processing
|
923 |
+
self.post_init()
|
924 |
+
|
925 |
+
def get_input_embeddings(self):
|
926 |
+
return self.embed_tokens
|
927 |
+
|
928 |
+
def set_input_embeddings(self, value):
|
929 |
+
self.embed_tokens = value
|
930 |
+
|
931 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
932 |
+
def forward(
|
933 |
+
self,
|
934 |
+
input_ids: torch.LongTensor = None,
|
935 |
+
attention_mask: Optional[torch.Tensor] = None,
|
936 |
+
position_ids: Optional[torch.LongTensor] = None,
|
937 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
938 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
939 |
+
use_cache: Optional[bool] = None,
|
940 |
+
output_attentions: Optional[bool] = None,
|
941 |
+
output_hidden_states: Optional[bool] = None,
|
942 |
+
return_dict: Optional[bool] = None,
|
943 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
944 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
945 |
+
output_hidden_states = (
|
946 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
947 |
+
)
|
948 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
949 |
+
|
950 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
951 |
+
|
952 |
+
# retrieve input_ids and inputs_embeds
|
953 |
+
if input_ids is not None and inputs_embeds is not None:
|
954 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
955 |
+
elif input_ids is not None:
|
956 |
+
batch_size, seq_length = input_ids.shape
|
957 |
+
elif inputs_embeds is not None:
|
958 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
959 |
+
else:
|
960 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
961 |
+
|
962 |
+
if self.gradient_checkpointing and self.training:
|
963 |
+
if use_cache:
|
964 |
+
logger.warning_once(
|
965 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
966 |
+
)
|
967 |
+
use_cache = False
|
968 |
+
|
969 |
+
past_key_values_length = 0
|
970 |
+
|
971 |
+
if use_cache:
|
972 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
973 |
+
if use_legacy_cache:
|
974 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
975 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
976 |
+
|
977 |
+
if position_ids is None:
|
978 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
979 |
+
position_ids = torch.arange(
|
980 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
981 |
+
)
|
982 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
983 |
+
else:
|
984 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
985 |
+
|
986 |
+
if inputs_embeds is None:
|
987 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
988 |
+
|
989 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
990 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
991 |
+
if is_padding_right:
|
992 |
+
raise ValueError(
|
993 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
994 |
+
" this may lead to unexpected behaviour for Flash Attention version of Qwen2. Make sure to "
|
995 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
996 |
+
)
|
997 |
+
|
998 |
+
if self._attn_implementation == "flash_attention_2":
|
999 |
+
# 2d mask is passed through the layers
|
1000 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1001 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
1002 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1003 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1004 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1005 |
+
attention_mask,
|
1006 |
+
(batch_size, seq_length),
|
1007 |
+
inputs_embeds,
|
1008 |
+
past_key_values_length,
|
1009 |
+
)
|
1010 |
+
else:
|
1011 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1012 |
+
attention_mask,
|
1013 |
+
(batch_size, seq_length),
|
1014 |
+
inputs_embeds,
|
1015 |
+
past_key_values_length,
|
1016 |
+
sliding_window=self.config.sliding_window,
|
1017 |
+
)
|
1018 |
+
|
1019 |
+
hidden_states = inputs_embeds
|
1020 |
+
|
1021 |
+
# decoder layers
|
1022 |
+
all_hidden_states = () if output_hidden_states else None
|
1023 |
+
all_self_attns = () if output_attentions else None
|
1024 |
+
next_decoder_cache = None
|
1025 |
+
|
1026 |
+
for decoder_layer in self.layers:
|
1027 |
+
if output_hidden_states:
|
1028 |
+
all_hidden_states += (hidden_states,)
|
1029 |
+
|
1030 |
+
if self.gradient_checkpointing and self.training:
|
1031 |
+
# layer_outputs = self._gradient_checkpointing_func(
|
1032 |
+
# decoder_layer.__call__,
|
1033 |
+
# hidden_states,
|
1034 |
+
# attention_mask,
|
1035 |
+
# position_ids,
|
1036 |
+
# past_key_values,
|
1037 |
+
# output_attentions,
|
1038 |
+
# use_cache,
|
1039 |
+
# )
|
1040 |
+
def create_custom_forward(module):
|
1041 |
+
def custom_forward(*inputs):
|
1042 |
+
# None for past_key_value
|
1043 |
+
return module(*inputs)
|
1044 |
+
|
1045 |
+
return custom_forward
|
1046 |
+
|
1047 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
1048 |
+
create_custom_forward(decoder_layer),
|
1049 |
+
hidden_states,
|
1050 |
+
attention_mask,
|
1051 |
+
position_ids,
|
1052 |
+
past_key_values,
|
1053 |
+
output_attentions,
|
1054 |
+
use_cache,
|
1055 |
+
)
|
1056 |
+
else:
|
1057 |
+
layer_outputs = decoder_layer(
|
1058 |
+
hidden_states,
|
1059 |
+
attention_mask=attention_mask,
|
1060 |
+
position_ids=position_ids,
|
1061 |
+
past_key_value=past_key_values,
|
1062 |
+
output_attentions=output_attentions,
|
1063 |
+
use_cache=use_cache,
|
1064 |
+
)
|
1065 |
+
|
1066 |
+
hidden_states = layer_outputs[0]
|
1067 |
+
|
1068 |
+
if use_cache:
|
1069 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1070 |
+
|
1071 |
+
if output_attentions:
|
1072 |
+
all_self_attns += (layer_outputs[1],)
|
1073 |
+
|
1074 |
+
hidden_states = self.norm(hidden_states)
|
1075 |
+
|
1076 |
+
# add hidden states from the last decoder layer
|
1077 |
+
if output_hidden_states:
|
1078 |
+
all_hidden_states += (hidden_states,)
|
1079 |
+
|
1080 |
+
next_cache = None
|
1081 |
+
if use_cache:
|
1082 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1083 |
+
|
1084 |
+
if not return_dict:
|
1085 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1086 |
+
return BaseModelOutputWithPast(
|
1087 |
+
last_hidden_state=hidden_states,
|
1088 |
+
past_key_values=next_cache,
|
1089 |
+
hidden_states=all_hidden_states,
|
1090 |
+
attentions=all_self_attns,
|
1091 |
+
)
|
1092 |
+
|
1093 |
+
|
1094 |
+
class Qwen2ForCausalLM(Qwen2PreTrainedModel):
|
1095 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1096 |
+
|
1097 |
+
def __init__(self, config):
|
1098 |
+
super().__init__(config)
|
1099 |
+
self.model = Qwen2Model(config)
|
1100 |
+
self.vocab_size = config.vocab_size
|
1101 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1102 |
+
self.gradient_checkpointing = False
|
1103 |
+
|
1104 |
+
# Initialize weights and apply final processing
|
1105 |
+
self.post_init()
|
1106 |
+
|
1107 |
+
def get_input_embeddings(self):
|
1108 |
+
return self.model.embed_tokens
|
1109 |
+
|
1110 |
+
def set_input_embeddings(self, value):
|
1111 |
+
self.model.embed_tokens = value
|
1112 |
+
|
1113 |
+
def get_output_embeddings(self):
|
1114 |
+
return self.lm_head
|
1115 |
+
|
1116 |
+
def set_output_embeddings(self, new_embeddings):
|
1117 |
+
self.lm_head = new_embeddings
|
1118 |
+
|
1119 |
+
def set_decoder(self, decoder):
|
1120 |
+
self.model = decoder
|
1121 |
+
|
1122 |
+
def get_decoder(self):
|
1123 |
+
return self.model
|
1124 |
+
|
1125 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
1126 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1127 |
+
def forward(
|
1128 |
+
self,
|
1129 |
+
input_ids: torch.LongTensor = None,
|
1130 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1131 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1132 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1133 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1134 |
+
labels: Optional[torch.LongTensor] = None,
|
1135 |
+
use_cache: Optional[bool] = None,
|
1136 |
+
output_attentions: Optional[bool] = None,
|
1137 |
+
output_hidden_states: Optional[bool] = None,
|
1138 |
+
return_dict: Optional[bool] = None,
|
1139 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1140 |
+
r"""
|
1141 |
+
Args:
|
1142 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1143 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1144 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1145 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1146 |
+
|
1147 |
+
Returns:
|
1148 |
+
|
1149 |
+
Example:
|
1150 |
+
|
1151 |
+
```python
|
1152 |
+
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM
|
1153 |
+
|
1154 |
+
>>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1155 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1156 |
+
|
1157 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1158 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1159 |
+
|
1160 |
+
>>> # Generate
|
1161 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1162 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1163 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1164 |
+
```"""
|
1165 |
+
|
1166 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1167 |
+
output_hidden_states = (
|
1168 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1169 |
+
)
|
1170 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1171 |
+
|
1172 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1173 |
+
outputs = self.model(
|
1174 |
+
input_ids=input_ids,
|
1175 |
+
attention_mask=attention_mask,
|
1176 |
+
position_ids=position_ids,
|
1177 |
+
past_key_values=past_key_values,
|
1178 |
+
inputs_embeds=inputs_embeds,
|
1179 |
+
use_cache=use_cache,
|
1180 |
+
output_attentions=output_attentions,
|
1181 |
+
output_hidden_states=output_hidden_states,
|
1182 |
+
return_dict=return_dict,
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
hidden_states = outputs[0]
|
1186 |
+
if self.gradient_checkpointing and self.training:
|
1187 |
+
def create_custom_forward(module):
|
1188 |
+
def custom_forward(*inputs):
|
1189 |
+
# None for past_key_value
|
1190 |
+
return module(*inputs)
|
1191 |
+
return custom_forward
|
1192 |
+
|
1193 |
+
logits = torch.utils.checkpoint.checkpoint(
|
1194 |
+
create_custom_forward(self.lm_head),
|
1195 |
+
hidden_states
|
1196 |
+
)
|
1197 |
+
else:
|
1198 |
+
logits = self.lm_head(hidden_states)
|
1199 |
+
# logits = logits.float()
|
1200 |
+
|
1201 |
+
loss = None
|
1202 |
+
if labels is not None:
|
1203 |
+
# Shift so that tokens < n predict n
|
1204 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1205 |
+
shift_labels = labels[..., 1:].contiguous()
|
1206 |
+
# Flatten the tokens
|
1207 |
+
loss_fct = CrossEntropyLoss()
|
1208 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1209 |
+
shift_labels = shift_labels.view(-1)
|
1210 |
+
# Enable model parallelism
|
1211 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1212 |
+
if self.gradient_checkpointing and self.training:
|
1213 |
+
def create_custom_forward(module):
|
1214 |
+
def custom_forward(*inputs):
|
1215 |
+
# inputs = (inputs[0].float(), *inputs[1:])
|
1216 |
+
return module(*inputs)
|
1217 |
+
|
1218 |
+
return custom_forward
|
1219 |
+
loss = torch.utils.checkpoint.checkpoint(
|
1220 |
+
create_custom_forward(loss_fct),
|
1221 |
+
shift_logits,
|
1222 |
+
shift_labels
|
1223 |
+
)
|
1224 |
+
else:
|
1225 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1226 |
+
# loss = loss_fct(shift_logits, shift_labels)
|
1227 |
+
|
1228 |
+
if not return_dict:
|
1229 |
+
output = (logits,) + outputs[1:]
|
1230 |
+
return (loss,) + output if loss is not None else output
|
1231 |
+
|
1232 |
+
return CausalLMOutputWithPast(
|
1233 |
+
loss=loss,
|
1234 |
+
logits=logits,
|
1235 |
+
past_key_values=outputs.past_key_values,
|
1236 |
+
hidden_states=outputs.hidden_states,
|
1237 |
+
attentions=outputs.attentions,
|
1238 |
+
)
|
1239 |
+
|
1240 |
+
def prepare_inputs_for_generation(
|
1241 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1242 |
+
):
|
1243 |
+
# Omit tokens covered by past_key_values
|
1244 |
+
if past_key_values is not None:
|
1245 |
+
if isinstance(past_key_values, Cache):
|
1246 |
+
cache_length = past_key_values.get_seq_length()
|
1247 |
+
past_length = past_key_values.seen_tokens
|
1248 |
+
max_cache_length = past_key_values.get_max_length()
|
1249 |
+
else:
|
1250 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1251 |
+
max_cache_length = None
|
1252 |
+
|
1253 |
+
# Keep only the unprocessed tokens:
|
1254 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1255 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1256 |
+
# input)
|
1257 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1258 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1259 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1260 |
+
# input_ids based on the past_length.
|
1261 |
+
elif past_length < input_ids.shape[1]:
|
1262 |
+
input_ids = input_ids[:, past_length:]
|
1263 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1264 |
+
|
1265 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1266 |
+
if (
|
1267 |
+
max_cache_length is not None
|
1268 |
+
and attention_mask is not None
|
1269 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1270 |
+
):
|
1271 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1272 |
+
|
1273 |
+
position_ids = kwargs.get("position_ids", None)
|
1274 |
+
if attention_mask is not None and position_ids is None:
|
1275 |
+
# create position_ids on the fly for batch generation
|
1276 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1277 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1278 |
+
if past_key_values:
|
1279 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1280 |
+
|
1281 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1282 |
+
if inputs_embeds is not None and past_key_values is None:
|
1283 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1284 |
+
else:
|
1285 |
+
model_inputs = {"input_ids": input_ids}
|
1286 |
+
|
1287 |
+
model_inputs.update(
|
1288 |
+
{
|
1289 |
+
"position_ids": position_ids,
|
1290 |
+
"past_key_values": past_key_values,
|
1291 |
+
"use_cache": kwargs.get("use_cache"),
|
1292 |
+
"attention_mask": attention_mask,
|
1293 |
+
}
|
1294 |
+
)
|
1295 |
+
return model_inputs
|
1296 |
+
|
1297 |
+
@staticmethod
|
1298 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1299 |
+
reordered_past = ()
|
1300 |
+
for layer_past in past_key_values:
|
1301 |
+
reordered_past += (
|
1302 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1303 |
+
)
|
1304 |
+
return reordered_past
|
1305 |
+
|
1306 |
+
class IdentityMap(nn.Module):
|
1307 |
+
def __init__(self):
|
1308 |
+
super().__init__()
|
1309 |
+
|
1310 |
+
def forward(self, x, *args, **kwargs):
|
1311 |
+
return x
|
1312 |
+
|
1313 |
+
@property
|
1314 |
+
def config(self):
|
1315 |
+
return {"mm_projector_type": 'identity'}
|
1316 |
+
|
1317 |
+
class LlavaMetaModel:
|
1318 |
+
|
1319 |
+
def __init__(self, config):
|
1320 |
+
super(LlavaMetaModel, self).__init__(config)
|
1321 |
+
|
1322 |
+
if hasattr(config, "mm_vision_tower"):
|
1323 |
+
self.vision_tower = self.build_vision_tower(config.vision_tower_cfg)
|
1324 |
+
self.mm_projector = self.build_vision_projector(config)
|
1325 |
+
# hack
|
1326 |
+
# [Edited by zhenwei - 2024-02-02 20:36]
|
1327 |
+
is_meta = getattr(nn.Linear(1, 1, bias=False).weight, 'is_meta', False)
|
1328 |
+
if is_meta:
|
1329 |
+
fake_dict = {}
|
1330 |
+
for n, p in self.mm_projector.named_parameters():
|
1331 |
+
fake_dict[n] = torch.zeros_like(p, device='cpu')
|
1332 |
+
from transformers.modeling_utils import _load_state_dict_into_meta_model
|
1333 |
+
_load_state_dict_into_meta_model(
|
1334 |
+
self.mm_projector,
|
1335 |
+
fake_dict,
|
1336 |
+
fake_dict.keys(), # left for now but could be removed, see below
|
1337 |
+
'',
|
1338 |
+
fake_dict.keys(),
|
1339 |
+
)
|
1340 |
+
self.mm_projector.to('cuda' if torch.cuda.is_available() else 'cpu')
|
1341 |
+
|
1342 |
+
def get_vision_tower(self):
|
1343 |
+
vision_tower = getattr(self, 'vision_tower', None)
|
1344 |
+
if type(vision_tower) is list:
|
1345 |
+
vision_tower = vision_tower[0]
|
1346 |
+
return vision_tower
|
1347 |
+
|
1348 |
+
def build_vision_tower(self,vision_tower_cfg):
|
1349 |
+
return VisionTower(vision_tower_cfg)
|
1350 |
+
|
1351 |
+
def build_vision_projector(self,config):
|
1352 |
+
projector_type = getattr(config, 'mm_projector_type', 'linear')
|
1353 |
+
|
1354 |
+
if projector_type == 'linear':
|
1355 |
+
return nn.Linear(config.mm_hidden_size, config.hidden_size)
|
1356 |
+
|
1357 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
1358 |
+
if mlp_gelu_match:
|
1359 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
1360 |
+
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
1361 |
+
for _ in range(1, mlp_depth):
|
1362 |
+
modules.append(nn.GELU())
|
1363 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
1364 |
+
return nn.Sequential(*modules)
|
1365 |
+
|
1366 |
+
if projector_type == 'identity':
|
1367 |
+
return IdentityMap()
|
1368 |
+
|
1369 |
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
1370 |
+
|
1371 |
+
def initialize_vision_modules(self, model_args, fsdp=None):
|
1372 |
+
vision_tower = model_args.vision_tower
|
1373 |
+
mm_vision_select_layer = model_args.mm_vision_select_layer
|
1374 |
+
mm_vision_select_feature = model_args.mm_vision_select_feature
|
1375 |
+
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
|
1376 |
+
|
1377 |
+
self.config.mm_vision_tower = vision_tower
|
1378 |
+
|
1379 |
+
if self.get_vision_tower() is None:
|
1380 |
+
vision_tower = build_vision_tower(model_args)
|
1381 |
+
|
1382 |
+
if fsdp is not None and len(fsdp) > 0:
|
1383 |
+
self.vision_tower = [vision_tower]
|
1384 |
+
else:
|
1385 |
+
self.vision_tower = vision_tower
|
1386 |
+
else:
|
1387 |
+
if fsdp is not None and len(fsdp) > 0:
|
1388 |
+
vision_tower = self.vision_tower[0]
|
1389 |
+
else:
|
1390 |
+
vision_tower = self.vision_tower
|
1391 |
+
vision_tower.load_model()
|
1392 |
+
|
1393 |
+
self.config.use_mm_proj = True
|
1394 |
+
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
|
1395 |
+
self.config.mm_hidden_size = vision_tower.hidden_size
|
1396 |
+
self.config.mm_vision_select_layer = mm_vision_select_layer
|
1397 |
+
self.config.mm_vision_select_feature = mm_vision_select_feature
|
1398 |
+
|
1399 |
+
if getattr(self, 'mm_projector', None) is None:
|
1400 |
+
self.mm_projector = build_vision_projector(self.config)
|
1401 |
+
else:
|
1402 |
+
# In case it is frozen by LoRA
|
1403 |
+
for p in self.mm_projector.parameters():
|
1404 |
+
p.requires_grad = True
|
1405 |
+
# param_0 = list(self.mm_projector.parameters())[0]
|
1406 |
+
# def backward_hook(grad):
|
1407 |
+
# global ix
|
1408 |
+
# if ix % 100 == 0:
|
1409 |
+
# mean = torch.mean(grad).item()
|
1410 |
+
# std = torch.std(grad).item()
|
1411 |
+
# # print(f'[{ix}], mean: {mean}, std: {std}', file=debug_file, flush=True)
|
1412 |
+
# print(f'[{ix}], mean: {mean}, std: {std}', flush=True)
|
1413 |
+
# ix += 1
|
1414 |
+
# return grad
|
1415 |
+
# param_0.register_hook(backward_hook)
|
1416 |
+
if pretrain_mm_mlp_adapter is not None:
|
1417 |
+
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
1418 |
+
def get_w(weights, keyword):
|
1419 |
+
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
|
1420 |
+
|
1421 |
+
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
|
1422 |
+
|
1423 |
+
class LlavaMetaForCausalLM(ABC):
|
1424 |
+
|
1425 |
+
def init_constants(self, config):
|
1426 |
+
self.IGNORE_INDEX = getattr(config, 'ignore_index', -100)
|
1427 |
+
self.IMAGE_TOKEN_INDEX = getattr(config, 'image_token_index', 151646)
|
1428 |
+
self.DEFAULT_IMAGE_TOKEN = getattr(config, 'image_token', "<image>")
|
1429 |
+
|
1430 |
+
|
1431 |
+
@abstractmethod
|
1432 |
+
def get_model(self):
|
1433 |
+
pass
|
1434 |
+
|
1435 |
+
def get_vision_tower(self):
|
1436 |
+
return self.get_model().get_vision_tower()
|
1437 |
+
|
1438 |
+
def encode_images(self, images):
|
1439 |
+
image_features = self.get_model().get_vision_tower()(images)
|
1440 |
+
# image_features.requires_grad_(True)
|
1441 |
+
image_features = self.get_model().mm_projector(image_features)
|
1442 |
+
return image_features
|
1443 |
+
|
1444 |
+
def prepare_inputs_labels_for_multimodal(
|
1445 |
+
self, input_ids, position_ids, attention_mask, past_key_values, labels, images
|
1446 |
+
):
|
1447 |
+
vision_tower = self.get_vision_tower()
|
1448 |
+
if past_key_values is not None:
|
1449 |
+
target_shape = past_key_values[0][0].shape[2] + 1
|
1450 |
+
attention_mask = torch.ones(
|
1451 |
+
(attention_mask.shape[0], target_shape),
|
1452 |
+
dtype=attention_mask.dtype,
|
1453 |
+
device=attention_mask.device
|
1454 |
+
)
|
1455 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
1456 |
+
return input_ids[:, -1:], position_ids, attention_mask, past_key_values, None, labels
|
1457 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
1458 |
+
# if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
|
1459 |
+
# target_shape = past_key_values.seqlen_offset + 1
|
1460 |
+
# attention_mask = torch.cat((attention_mask, torch.ones(
|
1461 |
+
# (attention_mask.shape[0], target_shape - attention_mask.shape[1]),
|
1462 |
+
# dtype=attention_mask.dtype,
|
1463 |
+
# device=attention_mask.device
|
1464 |
+
# )), dim=1)
|
1465 |
+
# position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
1466 |
+
return input_ids, None, None, past_key_values, None, None
|
1467 |
+
# return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
1468 |
+
|
1469 |
+
if type(images) is list or images.ndim == 5:
|
1470 |
+
concat_images = torch.cat([image for image in images], dim=0)
|
1471 |
+
# concat_images.requires_grad_(True)
|
1472 |
+
image_features = self.encode_images(concat_images)
|
1473 |
+
split_sizes = [image.shape[0] for image in images]
|
1474 |
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
1475 |
+
image_features = [x.flatten(0, 1).to(self.device) for x in image_features]
|
1476 |
+
else:
|
1477 |
+
# images.requires_grad_(True)
|
1478 |
+
image_features = self.encode_images(images).to(self.device)
|
1479 |
+
|
1480 |
+
# TODO: image start / end is not implemented here to support pretraining.
|
1481 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
1482 |
+
raise NotImplementedError
|
1483 |
+
|
1484 |
+
# Let's just add dummy tensors if they do not exist,
|
1485 |
+
# it is a headache to deal with None all the time.
|
1486 |
+
# But it is not ideal, and if you have a better idea,
|
1487 |
+
# please open an issue / submit a PR, thanks.
|
1488 |
+
_labels = labels
|
1489 |
+
_position_ids = position_ids
|
1490 |
+
_attention_mask = attention_mask
|
1491 |
+
if attention_mask is None:
|
1492 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
1493 |
+
else:
|
1494 |
+
attention_mask = attention_mask.bool()
|
1495 |
+
if position_ids is None:
|
1496 |
+
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
1497 |
+
if labels is None:
|
1498 |
+
labels = torch.full_like(input_ids, self.IGNORE_INDEX)
|
1499 |
+
|
1500 |
+
# remove the padding using attention_mask -- TODO: double check
|
1501 |
+
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
|
1502 |
+
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
|
1503 |
+
|
1504 |
+
new_input_embeds = []
|
1505 |
+
new_labels = []
|
1506 |
+
cur_image_idx = 0
|
1507 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
1508 |
+
num_images = (cur_input_ids == self.IMAGE_TOKEN_INDEX).sum()
|
1509 |
+
if num_images == 0:
|
1510 |
+
cur_image_features = image_features[cur_image_idx]
|
1511 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
|
1512 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
|
1513 |
+
new_input_embeds.append(cur_input_embeds)
|
1514 |
+
new_labels.append(labels[batch_idx])
|
1515 |
+
cur_image_idx += 1
|
1516 |
+
continue
|
1517 |
+
|
1518 |
+
image_token_indices = [-1] + torch.where(cur_input_ids == self.IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
|
1519 |
+
cur_input_ids_noim = []
|
1520 |
+
cur_labels = labels[batch_idx]
|
1521 |
+
cur_labels_noim = []
|
1522 |
+
for i in range(len(image_token_indices) - 1):
|
1523 |
+
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
|
1524 |
+
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
|
1525 |
+
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
1526 |
+
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
|
1527 |
+
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
1528 |
+
cur_new_input_embeds = []
|
1529 |
+
cur_new_labels = []
|
1530 |
+
|
1531 |
+
for i in range(num_images + 1):
|
1532 |
+
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
1533 |
+
cur_new_labels.append(cur_labels_noim[i])
|
1534 |
+
if i < num_images:
|
1535 |
+
cur_image_features = image_features[cur_image_idx]
|
1536 |
+
cur_image_idx += 1
|
1537 |
+
cur_new_input_embeds.append(cur_image_features)
|
1538 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), self.IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
|
1539 |
+
|
1540 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
1541 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
1542 |
+
|
1543 |
+
new_input_embeds.append(cur_new_input_embeds)
|
1544 |
+
new_labels.append(cur_new_labels)
|
1545 |
+
|
1546 |
+
# Truncate sequences to max length as image embeddings can make the sequence longer
|
1547 |
+
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
|
1548 |
+
if tokenizer_model_max_length is not None:
|
1549 |
+
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
|
1550 |
+
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
1551 |
+
# Combine them
|
1552 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
1553 |
+
batch_size = len(new_input_embeds)
|
1554 |
+
|
1555 |
+
new_input_embeds_padded = []
|
1556 |
+
new_labels_padded = torch.full((batch_size, max_len), self.IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
|
1557 |
+
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
|
1558 |
+
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
|
1559 |
+
|
1560 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
|
1561 |
+
cur_len = cur_new_embed.shape[0]
|
1562 |
+
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
|
1563 |
+
new_input_embeds_padded.append(torch.cat((
|
1564 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
|
1565 |
+
cur_new_embed
|
1566 |
+
), dim=0))
|
1567 |
+
if cur_len > 0:
|
1568 |
+
new_labels_padded[i, -cur_len:] = cur_new_labels
|
1569 |
+
attention_mask[i, -cur_len:] = True
|
1570 |
+
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
1571 |
+
else:
|
1572 |
+
new_input_embeds_padded.append(torch.cat((
|
1573 |
+
cur_new_embed,
|
1574 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
|
1575 |
+
), dim=0))
|
1576 |
+
if cur_len > 0:
|
1577 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
1578 |
+
attention_mask[i, :cur_len] = True
|
1579 |
+
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
1580 |
+
|
1581 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
1582 |
+
# logger.info(f"shape of new_input_embeds: {new_input_embeds.shape}")
|
1583 |
+
|
1584 |
+
if _labels is None:
|
1585 |
+
new_labels = None
|
1586 |
+
else:
|
1587 |
+
new_labels = new_labels_padded
|
1588 |
+
|
1589 |
+
if _attention_mask is None:
|
1590 |
+
attention_mask = None
|
1591 |
+
else:
|
1592 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
1593 |
+
|
1594 |
+
if _position_ids is None:
|
1595 |
+
position_ids = None
|
1596 |
+
|
1597 |
+
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
|
1598 |
+
|
1599 |
+
def initialize_vision_tokenizer(self, model_args, tokenizer):
|
1600 |
+
if model_args.mm_use_im_patch_token:
|
1601 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
1602 |
+
self.resize_token_embeddings(len(tokenizer))
|
1603 |
+
|
1604 |
+
if model_args.mm_use_im_start_end:
|
1605 |
+
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
1606 |
+
self.resize_token_embeddings(len(tokenizer))
|
1607 |
+
|
1608 |
+
if num_new_tokens > 0:
|
1609 |
+
input_embeddings = self.get_input_embeddings().weight.data
|
1610 |
+
output_embeddings = self.get_output_embeddings().weight.data
|
1611 |
+
|
1612 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
1613 |
+
dim=0, keepdim=True)
|
1614 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
1615 |
+
dim=0, keepdim=True)
|
1616 |
+
|
1617 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
1618 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
1619 |
+
|
1620 |
+
if model_args.tune_mm_mlp_adapter:
|
1621 |
+
for p in self.get_input_embeddings().parameters():
|
1622 |
+
p.requires_grad = True
|
1623 |
+
for p in self.get_output_embeddings().parameters():
|
1624 |
+
p.requires_grad = False
|
1625 |
+
|
1626 |
+
if model_args.pretrain_mm_mlp_adapter:
|
1627 |
+
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
|
1628 |
+
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
|
1629 |
+
assert num_new_tokens == 2
|
1630 |
+
if input_embeddings.shape == embed_tokens_weight.shape:
|
1631 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
|
1632 |
+
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
1633 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
1634 |
+
else:
|
1635 |
+
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
|
1636 |
+
elif model_args.mm_use_im_patch_token:
|
1637 |
+
if model_args.tune_mm_mlp_adapter:
|
1638 |
+
for p in self.get_input_embeddings().parameters():
|
1639 |
+
p.requires_grad = False
|
1640 |
+
for p in self.get_output_embeddings().parameters():
|
1641 |
+
p.requires_grad = False
|
1642 |
+
|
1643 |
+
|
1644 |
+
class ImpQwen2Model(LlavaMetaModel, Qwen2Model):
|
1645 |
+
config_class = ImpQwen2Config
|
1646 |
+
|
1647 |
+
def __init__(self, config: ImpQwen2Config):
|
1648 |
+
super(ImpQwen2Model, self).__init__(config)
|
1649 |
+
|
1650 |
+
class ImpQwen2ForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
1651 |
+
config_class = ImpQwen2Config
|
1652 |
+
|
1653 |
+
def __init__(self, config):
|
1654 |
+
super(ImpQwen2ForCausalLM, self).__init__(config)
|
1655 |
+
self.model = ImpQwen2Model(config)
|
1656 |
+
self.vocab_size = config.vocab_size
|
1657 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1658 |
+
self.need_clear_cache = False
|
1659 |
+
|
1660 |
+
self.post_init()
|
1661 |
+
self.init_constants(config)
|
1662 |
+
|
1663 |
+
def get_model(self):
|
1664 |
+
return self.model
|
1665 |
+
|
1666 |
+
def image_preprocess(self, images):
|
1667 |
+
return self.get_vision_tower().image_processor(images)['pixel_values']
|
1668 |
+
|
1669 |
+
|
1670 |
+
def forward(
|
1671 |
+
self,
|
1672 |
+
input_ids: torch.LongTensor = None,
|
1673 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1674 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1675 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1676 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1677 |
+
labels: Optional[torch.LongTensor] = None,
|
1678 |
+
use_cache: Optional[bool] = None,
|
1679 |
+
output_attentions: Optional[bool] = None,
|
1680 |
+
output_hidden_states: Optional[bool] = None,
|
1681 |
+
images: Optional[torch.FloatTensor] = None,
|
1682 |
+
return_dict: Optional[bool] = None,
|
1683 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1684 |
+
|
1685 |
+
if inputs_embeds is None:
|
1686 |
+
(
|
1687 |
+
input_ids,
|
1688 |
+
position_ids,
|
1689 |
+
attention_mask,
|
1690 |
+
past_key_values,
|
1691 |
+
inputs_embeds,
|
1692 |
+
labels
|
1693 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
1694 |
+
input_ids,
|
1695 |
+
position_ids,
|
1696 |
+
attention_mask,
|
1697 |
+
past_key_values,
|
1698 |
+
labels,
|
1699 |
+
images
|
1700 |
+
)
|
1701 |
+
return super().forward(
|
1702 |
+
input_ids=input_ids,
|
1703 |
+
attention_mask=attention_mask,
|
1704 |
+
position_ids=position_ids,
|
1705 |
+
past_key_values=past_key_values,
|
1706 |
+
inputs_embeds=inputs_embeds,
|
1707 |
+
labels=labels,
|
1708 |
+
use_cache=use_cache,
|
1709 |
+
output_attentions=output_attentions,
|
1710 |
+
output_hidden_states=output_hidden_states,
|
1711 |
+
return_dict=return_dict
|
1712 |
+
)
|
1713 |
+
|
1714 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
1715 |
+
images = kwargs.pop("images", None)
|
1716 |
+
_inputs = super().prepare_inputs_for_generation(
|
1717 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
1718 |
+
)
|
1719 |
+
if images is not None:
|
1720 |
+
_inputs['images'] = images
|
1721 |
+
return _inputs
|
1722 |
+
|
1723 |
+
|
1724 |
+
AutoConfig.register("imp_qwen2", ImpQwen2Config)
|
1725 |
+
AutoModelForCausalLM.register(ImpQwen2Config, ImpQwen2ForCausalLM)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|im_end|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
tokenization_qwen2.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for Qwen2."""
|
16 |
+
|
17 |
+
import json
|
18 |
+
import os
|
19 |
+
import unicodedata
|
20 |
+
from functools import lru_cache
|
21 |
+
from typing import Optional, Tuple
|
22 |
+
|
23 |
+
import regex as re
|
24 |
+
|
25 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
26 |
+
from transformers.utils import logging
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
VOCAB_FILES_NAMES = {
|
32 |
+
"vocab_file": "vocab.json",
|
33 |
+
"merges_file": "merges.txt",
|
34 |
+
}
|
35 |
+
|
36 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
37 |
+
"vocab_file": {"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/vocab.json"},
|
38 |
+
"merges_file": {"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/merges.txt"},
|
39 |
+
}
|
40 |
+
|
41 |
+
MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768}
|
42 |
+
|
43 |
+
PRETOKENIZE_REGEX = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
44 |
+
|
45 |
+
|
46 |
+
@lru_cache()
|
47 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
|
48 |
+
def bytes_to_unicode():
|
49 |
+
"""
|
50 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
51 |
+
characters the bpe code barfs on.
|
52 |
+
|
53 |
+
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
54 |
+
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
55 |
+
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
56 |
+
tables between utf-8 bytes and unicode strings.
|
57 |
+
"""
|
58 |
+
bs = (
|
59 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
60 |
+
)
|
61 |
+
cs = bs[:]
|
62 |
+
n = 0
|
63 |
+
for b in range(2**8):
|
64 |
+
if b not in bs:
|
65 |
+
bs.append(b)
|
66 |
+
cs.append(2**8 + n)
|
67 |
+
n += 1
|
68 |
+
cs = [chr(n) for n in cs]
|
69 |
+
return dict(zip(bs, cs))
|
70 |
+
|
71 |
+
|
72 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
|
73 |
+
def get_pairs(word):
|
74 |
+
"""
|
75 |
+
Return set of symbol pairs in a word.
|
76 |
+
|
77 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
78 |
+
"""
|
79 |
+
pairs = set()
|
80 |
+
prev_char = word[0]
|
81 |
+
for char in word[1:]:
|
82 |
+
pairs.add((prev_char, char))
|
83 |
+
prev_char = char
|
84 |
+
return pairs
|
85 |
+
|
86 |
+
|
87 |
+
class Qwen2Tokenizer(PreTrainedTokenizer):
|
88 |
+
"""
|
89 |
+
Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
90 |
+
|
91 |
+
Same with GPT2Tokenzier, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
|
92 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
93 |
+
|
94 |
+
```python
|
95 |
+
>>> from transformers import Qwen2Tokenizer
|
96 |
+
|
97 |
+
>>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer")
|
98 |
+
>>> tokenizer("Hello world")["input_ids"]
|
99 |
+
[9707, 1879]
|
100 |
+
|
101 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
102 |
+
[21927, 1879]
|
103 |
+
```
|
104 |
+
This is expected.
|
105 |
+
|
106 |
+
You should not use GPT2Tokenizer instead, because of the different pretokenization rules.
|
107 |
+
|
108 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
109 |
+
this superclass for more information regarding those methods.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
vocab_file (`str`):
|
113 |
+
Path to the vocabulary file.
|
114 |
+
merges_file (`str`):
|
115 |
+
Path to the merges file.
|
116 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
117 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
118 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
119 |
+
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
120 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
121 |
+
token instead.
|
122 |
+
bos_token (`str`, *optional*):
|
123 |
+
The beginning of sequence token. Not applicable for this tokenizer.
|
124 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
125 |
+
The end of sequence token.
|
126 |
+
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
127 |
+
The token used for padding, for example when batching sequences of different lengths.
|
128 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
129 |
+
Whether or not the model should cleanup the spaces that were added when splitting the input text during the
|
130 |
+
tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces.
|
131 |
+
split_special_tokens (`bool`, *optional*, defaults to `False`):
|
132 |
+
Whether or not the special tokens should be split during the tokenization process. The default behavior is
|
133 |
+
to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") =
|
134 |
+
['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<',
|
135 |
+
'|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment.
|
136 |
+
"""
|
137 |
+
|
138 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
139 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
140 |
+
max_model_input_sizes = MAX_MODEL_INPUT_SIZES
|
141 |
+
model_input_names = ["input_ids", "attention_mask"]
|
142 |
+
|
143 |
+
def __init__(
|
144 |
+
self,
|
145 |
+
vocab_file,
|
146 |
+
merges_file,
|
147 |
+
errors="replace",
|
148 |
+
unk_token="<|endoftext|>",
|
149 |
+
bos_token=None,
|
150 |
+
eos_token="<|endoftext|>",
|
151 |
+
pad_token="<|endoftext|>",
|
152 |
+
clean_up_tokenization_spaces=False,
|
153 |
+
split_special_tokens=False,
|
154 |
+
**kwargs,
|
155 |
+
):
|
156 |
+
# Qwen vocab does not contain control tokens; added tokens need to be special
|
157 |
+
bos_token = (
|
158 |
+
AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
159 |
+
if isinstance(bos_token, str)
|
160 |
+
else bos_token
|
161 |
+
)
|
162 |
+
eos_token = (
|
163 |
+
AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
164 |
+
if isinstance(eos_token, str)
|
165 |
+
else eos_token
|
166 |
+
)
|
167 |
+
unk_token = (
|
168 |
+
AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
169 |
+
if isinstance(unk_token, str)
|
170 |
+
else unk_token
|
171 |
+
)
|
172 |
+
pad_token = (
|
173 |
+
AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
174 |
+
if isinstance(pad_token, str)
|
175 |
+
else pad_token
|
176 |
+
)
|
177 |
+
|
178 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
179 |
+
self.encoder = json.load(vocab_handle)
|
180 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
181 |
+
self.errors = errors # how to handle errors in decoding
|
182 |
+
self.byte_encoder = bytes_to_unicode()
|
183 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
184 |
+
bpe_merges = []
|
185 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
186 |
+
for line in merges_handle:
|
187 |
+
line = line.strip()
|
188 |
+
if not line or line.startswith("#"):
|
189 |
+
continue
|
190 |
+
bpe_merges.append(tuple(line.split()))
|
191 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
192 |
+
# NOTE: the cache can grow without bound and will get really large for long running processes
|
193 |
+
# (esp. for texts of language that do not use space between word, e.g. Chinese); technically
|
194 |
+
# not a memory leak but appears as one.
|
195 |
+
# GPT2Tokenizer has the same problem, so let's be consistent.
|
196 |
+
self.cache = {}
|
197 |
+
|
198 |
+
self.pat = re.compile(PRETOKENIZE_REGEX)
|
199 |
+
|
200 |
+
if kwargs.get("add_prefix_space", False):
|
201 |
+
logger.warning_once(
|
202 |
+
f"{self.__class__.__name} does not support `add_prefix_space`, setting it to True has no effect."
|
203 |
+
)
|
204 |
+
|
205 |
+
super().__init__(
|
206 |
+
errors=errors,
|
207 |
+
bos_token=bos_token,
|
208 |
+
eos_token=eos_token,
|
209 |
+
pad_token=pad_token,
|
210 |
+
unk_token=unk_token,
|
211 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
212 |
+
split_special_tokens=split_special_tokens,
|
213 |
+
**kwargs,
|
214 |
+
)
|
215 |
+
|
216 |
+
@property
|
217 |
+
def vocab_size(self) -> int:
|
218 |
+
return len(self.encoder)
|
219 |
+
|
220 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab
|
221 |
+
def get_vocab(self):
|
222 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
223 |
+
|
224 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
|
225 |
+
def bpe(self, token):
|
226 |
+
if token in self.cache:
|
227 |
+
return self.cache[token]
|
228 |
+
word = tuple(token)
|
229 |
+
pairs = get_pairs(word)
|
230 |
+
|
231 |
+
if not pairs:
|
232 |
+
return token
|
233 |
+
|
234 |
+
while True:
|
235 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
236 |
+
if bigram not in self.bpe_ranks:
|
237 |
+
break
|
238 |
+
first, second = bigram
|
239 |
+
new_word = []
|
240 |
+
i = 0
|
241 |
+
while i < len(word):
|
242 |
+
try:
|
243 |
+
j = word.index(first, i)
|
244 |
+
except ValueError:
|
245 |
+
new_word.extend(word[i:])
|
246 |
+
break
|
247 |
+
else:
|
248 |
+
new_word.extend(word[i:j])
|
249 |
+
i = j
|
250 |
+
|
251 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
252 |
+
new_word.append(first + second)
|
253 |
+
i += 2
|
254 |
+
else:
|
255 |
+
new_word.append(word[i])
|
256 |
+
i += 1
|
257 |
+
new_word = tuple(new_word)
|
258 |
+
word = new_word
|
259 |
+
if len(word) == 1:
|
260 |
+
break
|
261 |
+
else:
|
262 |
+
pairs = get_pairs(word)
|
263 |
+
word = " ".join(word)
|
264 |
+
self.cache[token] = word
|
265 |
+
return word
|
266 |
+
|
267 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize
|
268 |
+
def _tokenize(self, text):
|
269 |
+
"""Tokenize a string."""
|
270 |
+
bpe_tokens = []
|
271 |
+
for token in re.findall(self.pat, text):
|
272 |
+
token = "".join(
|
273 |
+
self.byte_encoder[b] for b in token.encode("utf-8")
|
274 |
+
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
275 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
276 |
+
return bpe_tokens
|
277 |
+
|
278 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
|
279 |
+
def _convert_token_to_id(self, token):
|
280 |
+
"""Converts a token (str) in an id using the vocab."""
|
281 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
282 |
+
|
283 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
|
284 |
+
def _convert_id_to_token(self, index):
|
285 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
286 |
+
return self.decoder.get(index)
|
287 |
+
|
288 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
|
289 |
+
def convert_tokens_to_string(self, tokens):
|
290 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
291 |
+
text = "".join(tokens)
|
292 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
293 |
+
return text
|
294 |
+
|
295 |
+
def decode(
|
296 |
+
self,
|
297 |
+
token_ids,
|
298 |
+
skip_special_tokens: bool = False,
|
299 |
+
clean_up_tokenization_spaces: Optional[bool] = False,
|
300 |
+
spaces_between_special_tokens: bool = False,
|
301 |
+
**kwargs,
|
302 |
+
) -> str:
|
303 |
+
# `spaces_between_special_tokens` defaults to True for _decode in slow tokenizers
|
304 |
+
# and cannot be configured elsewhere, but it should default to False for Qwen2Tokenizer
|
305 |
+
return super().decode(
|
306 |
+
token_ids,
|
307 |
+
skip_special_tokens=skip_special_tokens,
|
308 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
309 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
310 |
+
**kwargs,
|
311 |
+
)
|
312 |
+
|
313 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
|
314 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
315 |
+
if not os.path.isdir(save_directory):
|
316 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
317 |
+
return
|
318 |
+
vocab_file = os.path.join(
|
319 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
320 |
+
)
|
321 |
+
merge_file = os.path.join(
|
322 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
323 |
+
)
|
324 |
+
|
325 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
326 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
327 |
+
|
328 |
+
index = 0
|
329 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
330 |
+
writer.write("#version: 0.2\n")
|
331 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
332 |
+
if index != token_index:
|
333 |
+
logger.warning(
|
334 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
335 |
+
" Please check that the tokenizer is not corrupted!"
|
336 |
+
)
|
337 |
+
index = token_index
|
338 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
339 |
+
index += 1
|
340 |
+
|
341 |
+
return vocab_file, merge_file
|
342 |
+
|
343 |
+
def prepare_for_tokenization(self, text, **kwargs):
|
344 |
+
text = unicodedata.normalize("NFC", text)
|
345 |
+
return (text, kwargs)
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "<image>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
}
|
36 |
+
},
|
37 |
+
"additional_special_tokens": [
|
38 |
+
"<|im_start|>",
|
39 |
+
"<|im_end|>"
|
40 |
+
],
|
41 |
+
"auto_map": {
|
42 |
+
"AutoTokenizer": [
|
43 |
+
"tokenization_qwen2.Qwen2Tokenizer",
|
44 |
+
null
|
45 |
+
]
|
46 |
+
},
|
47 |
+
"bos_token": null,
|
48 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
49 |
+
"clean_up_tokenization_spaces": false,
|
50 |
+
"eos_token": "<|endoftext|>",
|
51 |
+
"errors": "replace",
|
52 |
+
"model_max_length": 32768,
|
53 |
+
"pad_token": "<|endoftext|>",
|
54 |
+
"split_special_tokens": false,
|
55 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
56 |
+
"unk_token": null
|
57 |
+
}
|
vision_encoder.py
ADDED
@@ -0,0 +1,593 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) MILVLG team.
|
2 |
+
# Licensed under the Apache 2.0 license.
|
3 |
+
#
|
4 |
+
# Some code here is copied from the project Phi-2 (https://huggingface.co/microsoft/phi-2),
|
5 |
+
# SigLIP@transformers==4.37.0.dev0 (https://huggingface.co/google/siglip-so400m-patch14-384),
|
6 |
+
# and Llava (https://github.com/haotian-liu/LLaVA), and modified by
|
7 |
+
# Zhenwei Shao (shaozw@hdu.edu.cn) @ MILVLG. We thank them for their great works.
|
8 |
+
# And their original licenses and copyright should be inherited (see the statements
|
9 |
+
# in `configuration_imp.py` for more details).
|
10 |
+
|
11 |
+
|
12 |
+
from typing import Any, Optional, Tuple, Union, List, Dict
|
13 |
+
from dataclasses import dataclass
|
14 |
+
import math
|
15 |
+
import warnings
|
16 |
+
from functools import partial, reduce
|
17 |
+
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
from PIL import Image
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
from transformers.image_processing_utils import BatchFeature
|
26 |
+
from transformers.image_transforms import (
|
27 |
+
convert_to_rgb,
|
28 |
+
normalize,
|
29 |
+
rescale,
|
30 |
+
resize,
|
31 |
+
to_channel_dimension_format,
|
32 |
+
)
|
33 |
+
from transformers.image_utils import (
|
34 |
+
ChannelDimension,
|
35 |
+
PILImageResampling,
|
36 |
+
to_numpy_array,
|
37 |
+
)
|
38 |
+
from transformers.activations import ACT2FN
|
39 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
40 |
+
from transformers.modeling_utils import PreTrainedModel
|
41 |
+
from transformers.utils import ModelOutput
|
42 |
+
|
43 |
+
from .configuration_imp_qwen import SiglipVisionConfig
|
44 |
+
|
45 |
+
|
46 |
+
# ============================================================================
|
47 |
+
# A simple image preprocessor for SigLIP models.
|
48 |
+
# ============================================================================
|
49 |
+
|
50 |
+
def simple_image_processor(
|
51 |
+
images,
|
52 |
+
image_mean=(0.5, 0.5, 0.5),
|
53 |
+
image_std=(0.5, 0.5, 0.5),
|
54 |
+
size=(384, 384),
|
55 |
+
resample=PILImageResampling.BICUBIC,
|
56 |
+
rescale_factor=1 / 255,
|
57 |
+
data_format=ChannelDimension.FIRST,
|
58 |
+
return_tensors="pt"
|
59 |
+
):
|
60 |
+
|
61 |
+
if isinstance(images, Image.Image):
|
62 |
+
images = [images]
|
63 |
+
else:
|
64 |
+
assert isinstance(images, list)
|
65 |
+
|
66 |
+
transforms = [
|
67 |
+
convert_to_rgb,
|
68 |
+
to_numpy_array,
|
69 |
+
partial(resize, size=size, resample=resample, data_format=data_format),
|
70 |
+
partial(rescale, scale=rescale_factor, data_format=data_format),
|
71 |
+
partial(normalize, mean=image_mean, std=image_std, data_format=data_format),
|
72 |
+
partial(to_channel_dimension_format, channel_dim=data_format, input_channel_dim=data_format),
|
73 |
+
]
|
74 |
+
|
75 |
+
images = reduce(lambda x, f: [*map(f, x)], transforms, images)
|
76 |
+
data = {"pixel_values": images}
|
77 |
+
|
78 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
79 |
+
|
80 |
+
# ============================================================================
|
81 |
+
# Definitions for SigLIP models.
|
82 |
+
# ============================================================================
|
83 |
+
|
84 |
+
@dataclass
|
85 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
|
86 |
+
class SiglipVisionModelOutput(ModelOutput):
|
87 |
+
"""
|
88 |
+
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
92 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
93 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
94 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
95 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
96 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
97 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
98 |
+
|
99 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
100 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
101 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
102 |
+
sequence_length)`.
|
103 |
+
|
104 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
105 |
+
heads.
|
106 |
+
"""
|
107 |
+
|
108 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
109 |
+
last_hidden_state: torch.FloatTensor = None
|
110 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
111 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
112 |
+
|
113 |
+
|
114 |
+
class SiglipVisionEmbeddings(nn.Module):
|
115 |
+
def __init__(self, config: SiglipVisionConfig):
|
116 |
+
super().__init__()
|
117 |
+
self.config = config
|
118 |
+
self.embed_dim = config.hidden_size
|
119 |
+
self.image_size = config.image_size
|
120 |
+
self.patch_size = config.patch_size
|
121 |
+
|
122 |
+
self.patch_embedding = nn.Conv2d(
|
123 |
+
in_channels=config.num_channels,
|
124 |
+
out_channels=self.embed_dim,
|
125 |
+
kernel_size=self.patch_size,
|
126 |
+
stride=self.patch_size,
|
127 |
+
padding="valid",
|
128 |
+
)
|
129 |
+
|
130 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
131 |
+
self.num_positions = self.num_patches
|
132 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
133 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
134 |
+
|
135 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
136 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
137 |
+
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
138 |
+
|
139 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
140 |
+
return embeddings
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
class SiglipAttention(nn.Module):
|
145 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
146 |
+
|
147 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
148 |
+
def __init__(self, config):
|
149 |
+
super().__init__()
|
150 |
+
self.config = config
|
151 |
+
self.embed_dim = config.hidden_size
|
152 |
+
self.num_heads = config.num_attention_heads
|
153 |
+
self.head_dim = self.embed_dim // self.num_heads
|
154 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
155 |
+
raise ValueError(
|
156 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
157 |
+
f" {self.num_heads})."
|
158 |
+
)
|
159 |
+
self.scale = self.head_dim**-0.5
|
160 |
+
self.dropout = config.attention_dropout
|
161 |
+
|
162 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
163 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
164 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
165 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
166 |
+
|
167 |
+
def forward(
|
168 |
+
self,
|
169 |
+
hidden_states: torch.Tensor,
|
170 |
+
attention_mask: Optional[torch.Tensor] = None,
|
171 |
+
output_attentions: Optional[bool] = False,
|
172 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
173 |
+
"""Input shape: Batch x Time x Channel"""
|
174 |
+
|
175 |
+
batch_size, q_len, _ = hidden_states.size()
|
176 |
+
|
177 |
+
query_states = self.q_proj(hidden_states)
|
178 |
+
key_states = self.k_proj(hidden_states)
|
179 |
+
value_states = self.v_proj(hidden_states)
|
180 |
+
|
181 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
182 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
183 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
184 |
+
|
185 |
+
k_v_seq_len = key_states.shape[-2]
|
186 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
|
187 |
+
|
188 |
+
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
|
189 |
+
raise ValueError(
|
190 |
+
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
|
191 |
+
f" {attn_weights.size()}"
|
192 |
+
)
|
193 |
+
|
194 |
+
if attention_mask is not None:
|
195 |
+
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
|
196 |
+
raise ValueError(
|
197 |
+
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
|
198 |
+
)
|
199 |
+
attn_weights = attn_weights + attention_mask
|
200 |
+
|
201 |
+
# upcast attention to fp32
|
202 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
203 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
204 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
205 |
+
|
206 |
+
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
|
207 |
+
raise ValueError(
|
208 |
+
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
|
209 |
+
f" {attn_output.size()}"
|
210 |
+
)
|
211 |
+
|
212 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
213 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
214 |
+
|
215 |
+
attn_output = self.out_proj(attn_output)
|
216 |
+
|
217 |
+
return attn_output, attn_weights
|
218 |
+
|
219 |
+
|
220 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
|
221 |
+
class SiglipMLP(nn.Module):
|
222 |
+
def __init__(self, config):
|
223 |
+
super().__init__()
|
224 |
+
self.config = config
|
225 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
226 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
227 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
228 |
+
|
229 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
230 |
+
hidden_states = self.fc1(hidden_states)
|
231 |
+
hidden_states = self.activation_fn(hidden_states)
|
232 |
+
hidden_states = self.fc2(hidden_states)
|
233 |
+
return hidden_states
|
234 |
+
|
235 |
+
|
236 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
|
237 |
+
class SiglipEncoderLayer(nn.Module):
|
238 |
+
def __init__(self, config: SiglipVisionConfig):
|
239 |
+
super().__init__()
|
240 |
+
self.embed_dim = config.hidden_size
|
241 |
+
self.self_attn = SiglipAttention(config)
|
242 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
243 |
+
self.mlp = SiglipMLP(config)
|
244 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
245 |
+
|
246 |
+
# Ignore copy
|
247 |
+
def forward(
|
248 |
+
self,
|
249 |
+
hidden_states: torch.Tensor,
|
250 |
+
attention_mask: torch.Tensor,
|
251 |
+
output_attentions: Optional[bool] = False,
|
252 |
+
) -> Tuple[torch.FloatTensor]:
|
253 |
+
"""
|
254 |
+
Args:
|
255 |
+
hidden_states (`torch.FloatTensor`):
|
256 |
+
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
257 |
+
attention_mask (`torch.FloatTensor`):
|
258 |
+
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
259 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
260 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
261 |
+
returned tensors for more detail.
|
262 |
+
"""
|
263 |
+
residual = hidden_states
|
264 |
+
|
265 |
+
hidden_states = self.layer_norm1(hidden_states)
|
266 |
+
hidden_states, attn_weights = self.self_attn(
|
267 |
+
hidden_states=hidden_states,
|
268 |
+
attention_mask=attention_mask,
|
269 |
+
output_attentions=output_attentions,
|
270 |
+
)
|
271 |
+
hidden_states = residual + hidden_states
|
272 |
+
|
273 |
+
residual = hidden_states
|
274 |
+
hidden_states = self.layer_norm2(hidden_states)
|
275 |
+
hidden_states = self.mlp(hidden_states)
|
276 |
+
hidden_states = residual + hidden_states
|
277 |
+
|
278 |
+
outputs = (hidden_states,)
|
279 |
+
|
280 |
+
if output_attentions:
|
281 |
+
outputs += (attn_weights,)
|
282 |
+
|
283 |
+
return outputs
|
284 |
+
|
285 |
+
|
286 |
+
class SiglipPreTrainedModel(PreTrainedModel):
|
287 |
+
"""
|
288 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
289 |
+
models.
|
290 |
+
"""
|
291 |
+
|
292 |
+
config_class = SiglipVisionConfig
|
293 |
+
base_model_prefix = "siglip"
|
294 |
+
supports_gradient_checkpointing = True
|
295 |
+
|
296 |
+
def _init_weights(self, module):
|
297 |
+
"""Initialize the weights"""
|
298 |
+
pass
|
299 |
+
|
300 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
|
301 |
+
class SiglipEncoder(nn.Module):
|
302 |
+
"""
|
303 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
304 |
+
[`SiglipEncoderLayer`].
|
305 |
+
|
306 |
+
Args:
|
307 |
+
config: SiglipVisionConfig
|
308 |
+
"""
|
309 |
+
|
310 |
+
def __init__(self, config: SiglipVisionConfig):
|
311 |
+
super().__init__()
|
312 |
+
self.config = config
|
313 |
+
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
314 |
+
self.gradient_checkpointing = False
|
315 |
+
|
316 |
+
# Ignore copy
|
317 |
+
def forward(
|
318 |
+
self,
|
319 |
+
inputs_embeds,
|
320 |
+
attention_mask: Optional[torch.Tensor] = None,
|
321 |
+
output_attentions: Optional[bool] = None,
|
322 |
+
output_hidden_states: Optional[bool] = None,
|
323 |
+
return_dict: Optional[bool] = None,
|
324 |
+
) -> Union[Tuple, BaseModelOutput]:
|
325 |
+
r"""
|
326 |
+
Args:
|
327 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
328 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
329 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
330 |
+
than the model's internal embedding lookup matrix.
|
331 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
332 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
333 |
+
|
334 |
+
- 1 for tokens that are **not masked**,
|
335 |
+
- 0 for tokens that are **masked**.
|
336 |
+
|
337 |
+
[What are attention masks?](../glossary#attention-mask)
|
338 |
+
output_attentions (`bool`, *optional*):
|
339 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
340 |
+
returned tensors for more detail.
|
341 |
+
output_hidden_states (`bool`, *optional*):
|
342 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
343 |
+
for more detail.
|
344 |
+
return_dict (`bool`, *optional*):
|
345 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
346 |
+
"""
|
347 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
348 |
+
output_hidden_states = (
|
349 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
350 |
+
)
|
351 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
352 |
+
|
353 |
+
encoder_states = () if output_hidden_states else None
|
354 |
+
all_attentions = () if output_attentions else None
|
355 |
+
|
356 |
+
hidden_states = inputs_embeds
|
357 |
+
for encoder_layer in self.layers:
|
358 |
+
if output_hidden_states:
|
359 |
+
encoder_states = encoder_states + (hidden_states,)
|
360 |
+
if self.gradient_checkpointing and self.training:
|
361 |
+
layer_outputs = self._gradient_checkpointing_func(
|
362 |
+
encoder_layer.__call__,
|
363 |
+
hidden_states,
|
364 |
+
attention_mask,
|
365 |
+
output_attentions,
|
366 |
+
)
|
367 |
+
else:
|
368 |
+
layer_outputs = encoder_layer(
|
369 |
+
hidden_states,
|
370 |
+
attention_mask,
|
371 |
+
output_attentions=output_attentions,
|
372 |
+
)
|
373 |
+
|
374 |
+
hidden_states = layer_outputs[0]
|
375 |
+
|
376 |
+
if output_attentions:
|
377 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
378 |
+
|
379 |
+
if output_hidden_states:
|
380 |
+
encoder_states = encoder_states + (hidden_states,)
|
381 |
+
|
382 |
+
if not return_dict:
|
383 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
384 |
+
return BaseModelOutput(
|
385 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
386 |
+
)
|
387 |
+
|
388 |
+
|
389 |
+
class SiglipVisionTransformer(nn.Module):
|
390 |
+
def __init__(self, config: SiglipVisionConfig):
|
391 |
+
super().__init__()
|
392 |
+
self.config = config
|
393 |
+
embed_dim = config.hidden_size
|
394 |
+
|
395 |
+
self.embeddings = SiglipVisionEmbeddings(config)
|
396 |
+
self.encoder = SiglipEncoder(config)
|
397 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
398 |
+
self.head = SiglipMultiheadAttentionPoolingHead(config)
|
399 |
+
|
400 |
+
def forward(
|
401 |
+
self,
|
402 |
+
pixel_values,
|
403 |
+
output_attentions: Optional[bool] = None,
|
404 |
+
output_hidden_states: Optional[bool] = None,
|
405 |
+
return_dict: Optional[bool] = None,
|
406 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
407 |
+
r"""
|
408 |
+
Returns:
|
409 |
+
|
410 |
+
"""
|
411 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
412 |
+
output_hidden_states = (
|
413 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
414 |
+
)
|
415 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
416 |
+
|
417 |
+
hidden_states = self.embeddings(pixel_values)
|
418 |
+
|
419 |
+
encoder_outputs = self.encoder(
|
420 |
+
inputs_embeds=hidden_states,
|
421 |
+
output_attentions=output_attentions,
|
422 |
+
output_hidden_states=output_hidden_states,
|
423 |
+
return_dict=return_dict,
|
424 |
+
)
|
425 |
+
|
426 |
+
last_hidden_state = encoder_outputs[0]
|
427 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
428 |
+
|
429 |
+
pooled_output = self.head(last_hidden_state)
|
430 |
+
|
431 |
+
if not return_dict:
|
432 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
433 |
+
|
434 |
+
return BaseModelOutputWithPooling(
|
435 |
+
last_hidden_state=last_hidden_state,
|
436 |
+
pooler_output=pooled_output,
|
437 |
+
hidden_states=encoder_outputs.hidden_states,
|
438 |
+
attentions=encoder_outputs.attentions,
|
439 |
+
)
|
440 |
+
|
441 |
+
|
442 |
+
class SiglipMultiheadAttentionPoolingHead(nn.Module):
|
443 |
+
"""Multihead Attention Pooling."""
|
444 |
+
|
445 |
+
def __init__(self, config: SiglipVisionConfig):
|
446 |
+
super().__init__()
|
447 |
+
|
448 |
+
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
449 |
+
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
|
450 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
451 |
+
self.mlp = SiglipMLP(config)
|
452 |
+
|
453 |
+
def forward(self, hidden_state):
|
454 |
+
batch_size = hidden_state.shape[0]
|
455 |
+
probe = self.probe.repeat(batch_size, 1, 1)
|
456 |
+
|
457 |
+
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
|
458 |
+
|
459 |
+
residual = hidden_state
|
460 |
+
hidden_state = self.layernorm(hidden_state)
|
461 |
+
hidden_state = residual + self.mlp(hidden_state)
|
462 |
+
|
463 |
+
return hidden_state[:, 0]
|
464 |
+
|
465 |
+
|
466 |
+
class SiglipVisionModel(SiglipPreTrainedModel):
|
467 |
+
config_class = SiglipVisionConfig
|
468 |
+
main_input_name = "pixel_values"
|
469 |
+
_no_split_modules = ["SiglipEncoderLayer"]
|
470 |
+
|
471 |
+
def __init__(self, config: SiglipVisionConfig):
|
472 |
+
super().__init__(config)
|
473 |
+
|
474 |
+
self.vision_model = SiglipVisionTransformer(config)
|
475 |
+
|
476 |
+
# Initialize weights and apply final processing
|
477 |
+
self.post_init()
|
478 |
+
|
479 |
+
def get_input_embeddings(self) -> nn.Module:
|
480 |
+
return self.vision_model.embeddings.patch_embedding
|
481 |
+
|
482 |
+
def forward(
|
483 |
+
self,
|
484 |
+
pixel_values,
|
485 |
+
output_attentions: Optional[bool] = None,
|
486 |
+
output_hidden_states: Optional[bool] = None,
|
487 |
+
return_dict: Optional[bool] = None,
|
488 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
489 |
+
r"""
|
490 |
+
Returns:
|
491 |
+
|
492 |
+
Examples:
|
493 |
+
|
494 |
+
```python
|
495 |
+
>>> from PIL import Image
|
496 |
+
>>> import requests
|
497 |
+
>>> from transformers import AutoProcessor, SiglipVisionModel
|
498 |
+
|
499 |
+
>>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224")
|
500 |
+
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
501 |
+
|
502 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
503 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
504 |
+
|
505 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
506 |
+
|
507 |
+
>>> outputs = model(**inputs)
|
508 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
509 |
+
>>> pooled_output = outputs.pooler_output # pooled features
|
510 |
+
```"""
|
511 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
512 |
+
|
513 |
+
return self.vision_model(
|
514 |
+
pixel_values=pixel_values,
|
515 |
+
output_attentions=output_attentions,
|
516 |
+
output_hidden_states=output_hidden_states,
|
517 |
+
return_dict=return_dict,
|
518 |
+
)
|
519 |
+
|
520 |
+
|
521 |
+
# ============================================================================
|
522 |
+
# VisionTower module for Imp
|
523 |
+
# ============================================================================
|
524 |
+
|
525 |
+
class VisionTower(nn.Module):
|
526 |
+
def __init__(self, vision_tower_cfg, delay_load=False):
|
527 |
+
super().__init__()
|
528 |
+
|
529 |
+
self.is_loaded = False
|
530 |
+
|
531 |
+
self.config = vision_tower_cfg
|
532 |
+
self.vision_tower_name = vision_tower_cfg.mm_vision_tower
|
533 |
+
self.select_layer = vision_tower_cfg.mm_vision_select_layer
|
534 |
+
# self.select_feature = getattr(vision_tower_cfg, 'mm_vision_select_feature', 'patch')
|
535 |
+
|
536 |
+
self.image_processor = simple_image_processor
|
537 |
+
|
538 |
+
if not delay_load:
|
539 |
+
self.load_model()
|
540 |
+
else:
|
541 |
+
raise NotImplementedError("delay load is not implemented yet.")
|
542 |
+
|
543 |
+
def load_model(self):
|
544 |
+
if self.is_loaded:
|
545 |
+
return
|
546 |
+
|
547 |
+
# "google/siglip-so400m-patch14-384"
|
548 |
+
# self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
|
549 |
+
self.vision_tower = SiglipVisionModel(self.config)
|
550 |
+
del self.vision_tower.vision_model.encoder.layers[(self.select_layer + 1):]
|
551 |
+
self.vision_tower.vision_model.head = nn.Identity()
|
552 |
+
self.vision_tower.requires_grad_(False)
|
553 |
+
self.vision_tower.eval()
|
554 |
+
|
555 |
+
self.is_loaded = True
|
556 |
+
|
557 |
+
@torch.no_grad()
|
558 |
+
def forward(self, images):
|
559 |
+
if type(images) is list:
|
560 |
+
image_features = []
|
561 |
+
for image in images:
|
562 |
+
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
563 |
+
image_feature = image_forward_out.hidden_states[-1].to(image.dtype)
|
564 |
+
assert image_features.shape[-2] == 729
|
565 |
+
image_features.append(image_feature)
|
566 |
+
else:
|
567 |
+
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
568 |
+
image_features = image_forward_outs.hidden_states[-1].to(images.dtype)
|
569 |
+
assert image_features.shape[-2] == 729
|
570 |
+
|
571 |
+
return image_features
|
572 |
+
|
573 |
+
@property
|
574 |
+
def dummy_feature(self):
|
575 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
576 |
+
|
577 |
+
@property
|
578 |
+
def dtype(self):
|
579 |
+
for p in self.vision_tower.parameters():
|
580 |
+
return p.dtype
|
581 |
+
|
582 |
+
@property
|
583 |
+
def device(self):
|
584 |
+
for p in self.vision_tower.parameters():
|
585 |
+
return p.device
|
586 |
+
|
587 |
+
@property
|
588 |
+
def hidden_size(self):
|
589 |
+
return self.config.hidden_size
|
590 |
+
|
591 |
+
@property
|
592 |
+
def num_patches(self):
|
593 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|