--- license: cc-by-nc-4.0 language: - en pipeline_tag: depth-estimation tags: - depth - relative depth --- # Depth-Anything-V2-Large (Transformers version) ## Introduction Depth Anything V2 is trained from 595K synthetic labeled images & 62M+ real unlabeled images, providing the most capable monocular depth estimation (MDE) model with the following features: - more fine-grained details than Depth Anything V1 - more robust than Depth Anything V1 & SD-based models (e.g., Marigold, Geowizard) - more efficient (10x faster) & more lightweight than SD-based models - impressive fine-tuned performance with our pre-trained models ## Installation ```bash git clone https://github.com/MackinationsAi/Upgraded-Depth-Anything-V2.git cd Upgraded-Depth-Anything-V2 one_click_install.bat ``` ## Usage Please refer to the [README.md](https://github.com/MackinationsAi/Upgraded-Depth-Anything-V2/blob/main/README.md) for actual usage. ## Test Code ```bash cd Upgraded-Depth-Anything-V2 venv\scripts\activate python test.py /path/to/your/image.jpg (or .png) ``` Create a test.py script using the code below: ```python import cv2 import torch import numpy as np import os import argparse from safetensors.torch import load_file from depth_anything_v2.dpt import DepthAnythingV2 # Argument parser for input image path parser = argparse.ArgumentParser(description="Depth map inference using DepthAnythingV2 model.") parser.add_argument("input_image_path", type=str, help="Path to the input image") args = parser.parse_args() # Determine the directory of this script script_dir = os.path.dirname(os.path.abspath(__file__)) # Set output path relative to the script directory output_image_path = os.path.join(script_dir, "base_udav2_hf-code-test.png") checkpoint_path = os.path.join(script_dir, "checkpoints", "depth_anything_v2_vitl.safetensors") # Device selection: CUDA, MPS, or CPU if torch.cuda.is_available(): device = torch.device('cuda') elif torch.backends.mps.is_available(): device = torch.device('mps') else: device = torch.device('cpu') model = DepthAnythingV2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024]) state_dict = load_file(checkpoint_path, device='cpu') model.load_state_dict(state_dict) model.to(device) model.eval() # Load the input image raw_img = cv2.imread(args.input_image_path) # Infer the depth map depth = model.infer_image(raw_img) # HxW raw depth map # Normalize the depth map to 0-255 for saving as an image depth_normalized = cv2.normalize(depth, None, 0, 255, cv2.NORM_MINMAX) depth_normalized = depth_normalized.astype(np.uint8) cv2.imwrite(output_image_path, depth_normalized) print(f"Depth map saved at {output_image_path}") ``` ## Citation If you find this project useful, please consider citing [MackinationsAi](https://github.com/MackinationsAi/) & the following: ```bibtex @article{depth_anything_v2, title={Depth Anything V2}, author={Yang, Lihe & Kang, Bingyi & Huang, Zilong & Zhao, Zhen & Xu, Xiaogang & Feng, Jiashi & Zhao, Hengshuang}, journal={arXiv:2406.09414}, year={2024} } @inproceedings{depth_anything_v1, title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data}, author={Yang, Lihe & Kang, Bingyi & Huang, Zilong & Xu, Xiaogang & Feng, Jiashi & Zhao, Hengshuang}, booktitle={CVPR}, year={2024} }