rl-lunar-lander / config.json
MadBonze's picture
Pushing the model to hub
538da70 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e85605a1ab0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e85605a1b40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e85605a1bd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e85605a1c60>", "_build": "<function ActorCriticPolicy._build at 0x7e85605a1cf0>", "forward": "<function ActorCriticPolicy.forward at 0x7e85605a1d80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e85605a1e10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e85605a1ea0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e85605a1f30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e85605a1fc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e85605a2050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e85605a20e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e856053f380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726468046793764953, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGa8JD7I3oi8MpjPule1FTk9ne+9daIPOgAAgD8AAIA/wNTCvVxDd7otbmk71AR3OCx5mLquGQy6AACAPwAAAADAWWM+dCaTvE3O6bu+iwY6XZ0Avg3+1DoAAIA/AACAP63XWr5xvlA8PnS/OqNl3rjzEeG9k37quQAAgD8AAIA/OmwVvq5noTsCQw09B0Q2u92fSL2O+yU8AACAPwAAgD/NvDU9klewPwpOBj8O7o2+cpFyu37W5z0AAAAAAAAAAO3COr64kuE69V3Gs1+cdzLpHr28jEAGNAAAgD8AAIA/mpsWPG6dFz/qNne7Sw/tvtk9Jj2suyk7AAAAAAAAAAC2bHu+r4K+PgBCADts5Mu+RnOsvXqkmj0AAAAAAAAAAMJBpr7t3DU/oh8fvpV35r4Gq1u+5czuPQAAAAAAAAAAEx8zvqQZdTzqJeU6GsEUuTg6A74fBx26AACAPwAAgD9mwP68ex6Cul37uDI5ajQxN89DOxVmn7MAAIA/AACAPw3RQL4UcaW8FU7SupPwKbkB6w4+IssHOgAAgD8AAIA/XWGqvlvx1LwUhZs80s9xuUjP+z3Aeec7AACAPwAAgD+t+oS+HNgwPYnjAD7PdTy+mlisvoun7b4AAAAAAAAAAKY3KD6DFmi8MJB5O/ABornDmM29rm6kugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+b+XRgJC2MAWyUS+aMAXSUR0CXUHjjJdSmdX2UKGgGR0Bv0AkHD766aAdL4mgIR0CXUVStNi6QdX2UKGgGR0BwKgvzvqkeaAdL7mgIR0CXUZm+TNdJdX2UKGgGR0BxZJD9fkWAaAdLvGgIR0CXVGfvnbItdX2UKGgGR0BuAdKbrkbQaAdL9mgIR0CXVZuxrzoVdX2UKGgGR0BxHnlEJBw/aAdL+2gIR0CXV/fOlfqpdX2UKGgGR8AChDCxeLNwaAdLt2gIR0CXWHH3UQTVdX2UKGgGR0BwnD9/BnBdaAdL+WgIR0CXWbqrBCUpdX2UKGgGR0Bh7WI9C/oJaAdN6ANoCEdAl1oAmzByj3V9lChoBkdAcpavugHu7mgHS/5oCEdAl1oecMEzPHV9lChoBkdAb69pQk5ZKWgHS9NoCEdAl1qETURWcXV9lChoBkdAZJuAWBSUDGgHTegDaAhHQJdbIlQdjoZ1fZQoaAZHQHBlHJLdvbZoB00yA2gIR0CXW/gDRtxddX2UKGgGR0Bs1NGb1AZ9aAdL3GgIR0CXXcLm6oVEdX2UKGgGR0BpuMqMFUyYaAdN8gFoCEdAl138n/kvK3V9lChoBkdAbcXq59Vmz2gHTd8BaAhHQJdeBFjNILB1fZQoaAZHQG5knARChOBoB0vIaAhHQJdfEu6ErXl1fZQoaAZHQHAW8xbjcVRoB0vZaAhHQJdhJh/iHZd1fZQoaAZHQHBpWfoRqXZoB0vDaAhHQJdhJBfKISF1fZQoaAZHQHEAGyon8bdoB00DAWgIR0CXvMN0NjLCdX2UKGgGR0BwzmQmu1WsaAdL/WgIR0CXvr5JK8L8dX2UKGgGR0BuVpqynk1eaAdL2WgIR0CXv6xmkFfRdX2UKGgGR0BwtbyFwkxAaAdL3GgIR0CXv9ghKUV0dX2UKGgGR0Bw/6bz9S/CaAdL6mgIR0CXwCF4cFQmdX2UKGgGR0BuVHpt78ekaAdL3WgIR0CXwS912aDxdX2UKGgGR0Bh5GK0lZ5iaAdN6ANoCEdAl8GGEGqxT3V9lChoBkdAcef1RtP56GgHS8RoCEdAl8KAFC9h7XV9lChoBkdAcPJlTFVDKGgHS+FoCEdAl8OA2l2vCHV9lChoBkdAcTkuW8h9s2gHS99oCEdAl8c8M3IdVHV9lChoBkdAcNY99+gDimgHS8toCEdAl8fFUuL743V9lChoBkdAbk87I1cdHWgHTa4CaAhHQJfH+gezUqh1fZQoaAZHQG45OJ+DvmZoB0veaAhHQJfIO+ZgG8p1fZQoaAZHQG2wYplSS/1oB006AWgIR0CXyOAyVObidX2UKGgGR0BduZyp71IzaAdN6ANoCEdAl8kdlNDc/XV9lChoBkdAb9yC1Z1V52gHTQoBaAhHQJfLTV2A5Jd1fZQoaAZHQHIyBwdbPhRoB0vYaAhHQJfLjCrLhaV1fZQoaAZHQHGfWlMyrPtoB001AWgIR0CXzeA+IMz/dX2UKGgGR0BxZ6DrZ8KHaAdL1mgIR0CXzwo86mwadX2UKGgGR0BDA/6GgzxgaAdLsWgIR0CXz0NkvsZ6dX2UKGgGR0BwB104iosJaAdLw2gIR0CXz0KuSwGGdX2UKGgGR0BkfFyvLX+VaAdN6ANoCEdAl891gUlAvHV9lChoBkdAck3aZQYUFmgHS9RoCEdAl8+aC6H0snV9lChoBkdAbbWGRmseXGgHS9BoCEdAl9CJuVHFxXV9lChoBkdAcdoRbbDdg2gHS/ZoCEdAl9CSILw4KnV9lChoBkdAYlJeP7vXsmgHTegDaAhHQJfQwv8IiTt1fZQoaAZHQCpjaGpMpPRoB0vKaAhHQJfSemj0tiB1fZQoaAZHQG4wY2S+xnpoB0vWaAhHQJfSp0zTF2p1fZQoaAZHQG78OYx+KCRoB0vDaAhHQJfVfMKTjed1fZQoaAZHQGIoQBxPwd9oB03oA2gIR0CX1jUUwi7kdX2UKGgGR0ByToSTQmeEaAdLymgIR0CX1jR6F/QTdX2UKGgGR0BiuMCih37laAdN6ANoCEdAl9eJTyauwHV9lChoBkdAcFuS7Xg9/2gHTQcBaAhHQJfYEUIsyzp1fZQoaAZHQGGKDKoybhFoB03oA2gIR0CX2JrlvIfbdX2UKGgGR0BxXvNGEwnIaAdNDgFoCEdAl9mmTxG2C3V9lChoBkdAceKElVtGeGgHTWYBaAhHQJfaDeBQN1B1fZQoaAZHQHA0A5Jbt7doB0vxaAhHQJfav5ckdFR1fZQoaAZHQHCV9pZfUnZoB00HAWgIR0CX26sMAmzCdX2UKGgGR0Bw4yt+1Bt2aAdL2mgIR0CX3P1QIldDdX2UKGgGR0Bu71+d9UjtaAdLz2gIR0CX3UDMeOn3dX2UKGgGR0BwM1IPK+zuaAdL7mgIR0CX3lr+YMOPdX2UKGgGR0Byg0PczqKQaAdL2WgIR0CX4B6Lfk3kdX2UKGgGR0BAc1dPci4baAdLxGgIR0CX4OG6f8MvdX2UKGgGR0Bw4G++M6zWaAdL8WgIR0CX4r29+PRzdX2UKGgGR0Bj01gnc+JQaAdN6ANoCEdAl+RLDqGDc3V9lChoBkdAcKqvtMPBi2gHS+poCEdAl+V2t6ol2XV9lChoBkdAYui7qY7aI2gHTegDaAhHQJfmPzshPj51fZQoaAZHQHB53FDOTq1oB0vhaAhHQJfnBpcophF1fZQoaAZHQCkp42S+xnpoB0vLaAhHQJfn3A6+36R1fZQoaAZHQHE2gmmce8xoB00OAWgIR0CX6aDiwSrYdX2UKGgGR0BwXLYlIEr5aAdNsAJoCEdAl+pGECeVcHV9lChoBkdANEFMZgogFGgHS6loCEdAl+tSOBDohnV9lChoBkdAcQYiPyTY/WgHS91oCEdAl+wt0Rvm5nV9lChoBkdAcgrzmfXf7GgHS9FoCEdAl+8kXLvCuXV9lChoBkdAbgXSbYsd1mgHS+5oCEdAl+9gkHD77HV9lChoBkfAEnel9BrvcGgHS8doCEdAl/CCQtBfKXV9lChoBkdAcGV9Wp6yB2gHTWIBaAhHQJfwl1U2kzp1fZQoaAZHQHDgARwqAjJoB0v2aAhHQJfxCZF5Oah1fZQoaAZHQG5tIAn2IwdoB0vIaAhHQJfxyWIGhVV1fZQoaAZHQDq9HmRvFWJoB0u0aAhHQJf1wJw84gl1fZQoaAZHQGRU5BTn7pFoB03oA2gIR0CX9h9xIatLdX2UKGgGR0BtINU+9rXUaAdL0mgIR0CX9zjwx33YdX2UKGgGR0BiMJUvPC2uaAdN6ANoCEdAl/eqhYeT3nV9lChoBkdAXlHbSJCSimgHTegDaAhHQJf37/yXlbN1fZQoaAZHQHH6niFTNt9oB0vHaAhHQJf4Ar+YMOR1fZQoaAZHQHHaZzPrv9doB0vGaAhHQJf4f557gKp1fZQoaAZHQHFVYzrNW2hoB0vVaAhHQJf+f2wmmch1fZQoaAZHQGwrlcpsoDxoB0vnaAhHQJf+4z9CNS91fZQoaAZHQHD46eK8+RpoB0u9aAhHQJf/gc0cfeV1fZQoaAZHQG5ZfPPcBU9oB0vIaAhHQJf/4vAXVLB1fZQoaAZHQGEjAf+0gKZoB03oA2gIR0CX//hrnDBNdX2UKGgGR0BtGBzT4L1FaAdLyWgIR0CYAIvDP4VRdX2UKGgGR0Bjw1ZX+2mYaAdN6ANoCEdAmACTZQHiWHV9lChoBkdAcSBAlv60pmgHTRUBaAhHQJgCXhCMPz51fZQoaAZHQHDRxuKoAGVoB003AWgIR0CYAzULDye7dX2UKGgGR0Bi+Kxs2vSuaAdN6ANoCEdAmANRJul41XV9lChoBkdAK/xaxHG0eGgHS4ZoCEdAmAOM5sCT2XV9lChoBkfANtIagmJFb2gHS7loCEdAmAZcByS3b3V9lChoBkdAcSa2QGOdXmgHS8xoCEdAmAb8ejmCAnV9lChoBkdAcO0TGo73f2gHS/VoCEdAmAevPgNwznV9lChoBkdAcZToM8YAKmgHTQkBaAhHQJgJ9esxO+J1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}