ManishThota
commited on
Commit
•
6e93497
1
Parent(s):
de561d0
Upload ImpForCausalLM
Browse files- config.json +3 -3
- configuration_imp.py +183 -0
- modeling_imp.py +1262 -0
- pytorch_model.bin +3 -0
- vision_encoder.py +593 -0
config.json
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"activation_function": "gelu_new",
|
4 |
"architectures": [
|
5 |
"ImpForCausalLM"
|
6 |
],
|
7 |
"attn_pdrop": 0.0,
|
8 |
"auto_map": {
|
9 |
-
"AutoConfig": "
|
10 |
-
"AutoModelForCausalLM": "
|
11 |
},
|
12 |
"embd_pdrop": 0.0,
|
13 |
"eos_token_id": 50295,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/workspace/imp/sparrow",
|
3 |
"activation_function": "gelu_new",
|
4 |
"architectures": [
|
5 |
"ImpForCausalLM"
|
6 |
],
|
7 |
"attn_pdrop": 0.0,
|
8 |
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_imp.ImpConfig",
|
10 |
+
"AutoModelForCausalLM": "modeling_imp.ImpForCausalLM"
|
11 |
},
|
12 |
"embd_pdrop": 0.0,
|
13 |
"eos_token_id": 50295,
|
configuration_imp.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) MILVLG team.
|
2 |
+
# Licensed under the Apache 2.0 license.
|
3 |
+
#
|
4 |
+
# Some code here is copied from the project Phi-2 (https://huggingface.co/microsoft/phi-2),
|
5 |
+
# SigLIP@transformers==4.37.0.dev0 (https://huggingface.co/google/siglip-so400m-patch14-384),
|
6 |
+
# and Llava (https://github.com/haotian-liu/LLaVA), and modified by
|
7 |
+
# Zhenwei Shao (shaozw@hdu.edu.cn) @ MILVLG. We thank them for their great works.
|
8 |
+
#
|
9 |
+
# We keep their original copyright statements as follows, which should be inherited:
|
10 |
+
# ------------------------------- Phi-2 ---------------------------------------------
|
11 |
+
# Copyright (c) Microsoft Corporation.
|
12 |
+
# Licensed under the MIT license.
|
13 |
+
# https://huggingface.co/google/siglip-so400m-patch14-384
|
14 |
+
#
|
15 |
+
# Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
|
16 |
+
# Licensed under the BSD 3-Clause License.
|
17 |
+
# ------------------------------- SigLIP --------------------------------------------
|
18 |
+
# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
|
19 |
+
#
|
20 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
21 |
+
# you may not use this file except in compliance with the License.
|
22 |
+
# You may obtain a copy of the License at
|
23 |
+
#
|
24 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
25 |
+
#
|
26 |
+
# Unless required by applicable law or agreed to in writing, software
|
27 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
28 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
29 |
+
# See the License for the specific language governing permissions and
|
30 |
+
# limitations under the License.
|
31 |
+
# ------------------------------- Llava ---------------------------------------------
|
32 |
+
# Copyright 2023 Haotian Liu
|
33 |
+
#
|
34 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
35 |
+
# you may not use this file except in compliance with the License.
|
36 |
+
# You may obtain a copy of the License at
|
37 |
+
#
|
38 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
39 |
+
#
|
40 |
+
# Unless required by applicable law or agreed to in writing, software
|
41 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
42 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
43 |
+
# See the License for the specific language governing permissions and
|
44 |
+
# limitations under the License.
|
45 |
+
# -----------------------------------------------------------------------------------
|
46 |
+
|
47 |
+
|
48 |
+
import os
|
49 |
+
import math
|
50 |
+
from typing import Optional, Union
|
51 |
+
|
52 |
+
from transformers import PretrainedConfig
|
53 |
+
from transformers.utils import logging
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
+
|
57 |
+
|
58 |
+
class PhiConfig(PretrainedConfig):
|
59 |
+
"""Phi configuration."""
|
60 |
+
|
61 |
+
model_type = "phi-msft"
|
62 |
+
attribute_map = {
|
63 |
+
"max_position_embeddings": "n_positions",
|
64 |
+
"hidden_size": "n_embd",
|
65 |
+
"num_attention_heads": "n_head",
|
66 |
+
"num_hidden_layers": "n_layer",
|
67 |
+
}
|
68 |
+
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
vocab_size: int = 50304,
|
72 |
+
n_positions: int = 2048,
|
73 |
+
n_embd: int = 1024,
|
74 |
+
n_layer: int = 20,
|
75 |
+
n_inner: Optional[int] = None,
|
76 |
+
n_head: int = 16,
|
77 |
+
n_head_kv: Optional[int] = None,
|
78 |
+
rotary_dim: Optional[int] = 32,
|
79 |
+
activation_function: Optional[str] = "gelu_new",
|
80 |
+
flash_attn: bool = False,
|
81 |
+
flash_rotary: bool = False,
|
82 |
+
fused_dense: bool = False,
|
83 |
+
attn_pdrop: float = 0.0,
|
84 |
+
embd_pdrop: float = 0.0,
|
85 |
+
resid_pdrop: float = 0.0,
|
86 |
+
layer_norm_epsilon: float = 1e-5,
|
87 |
+
initializer_range: float = 0.02,
|
88 |
+
tie_word_embeddings: bool = False,
|
89 |
+
pad_vocab_size_multiple: int = 64,
|
90 |
+
**kwargs
|
91 |
+
) -> None:
|
92 |
+
self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
|
93 |
+
self.n_positions = n_positions
|
94 |
+
self.n_embd = n_embd
|
95 |
+
self.n_layer = n_layer
|
96 |
+
self.n_inner = n_inner
|
97 |
+
self.n_head = n_head
|
98 |
+
self.n_head_kv = n_head_kv
|
99 |
+
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
100 |
+
self.activation_function = activation_function
|
101 |
+
self.flash_attn = flash_attn
|
102 |
+
self.flash_rotary = flash_rotary
|
103 |
+
self.fused_dense = fused_dense
|
104 |
+
self.attn_pdrop = attn_pdrop
|
105 |
+
self.embd_pdrop = embd_pdrop
|
106 |
+
self.resid_pdrop = resid_pdrop
|
107 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
108 |
+
self.initializer_range = initializer_range
|
109 |
+
|
110 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
class SiglipVisionConfig(PretrainedConfig):
|
115 |
+
|
116 |
+
model_type = "siglip_vision_model"
|
117 |
+
|
118 |
+
def __init__(
|
119 |
+
self,
|
120 |
+
hidden_size=768,
|
121 |
+
intermediate_size=3072,
|
122 |
+
num_hidden_layers=12,
|
123 |
+
num_attention_heads=12,
|
124 |
+
num_channels=3,
|
125 |
+
image_size=224,
|
126 |
+
patch_size=16,
|
127 |
+
hidden_act="gelu_pytorch_tanh",
|
128 |
+
layer_norm_eps=1e-6,
|
129 |
+
attention_dropout=0.0,
|
130 |
+
**kwargs,
|
131 |
+
):
|
132 |
+
super().__init__(**kwargs)
|
133 |
+
|
134 |
+
self.hidden_size = hidden_size
|
135 |
+
self.intermediate_size = intermediate_size
|
136 |
+
self.num_hidden_layers = num_hidden_layers
|
137 |
+
self.num_attention_heads = num_attention_heads
|
138 |
+
self.num_channels = num_channels
|
139 |
+
self.patch_size = patch_size
|
140 |
+
self.image_size = image_size
|
141 |
+
self.attention_dropout = attention_dropout
|
142 |
+
self.layer_norm_eps = layer_norm_eps
|
143 |
+
self.hidden_act = hidden_act
|
144 |
+
|
145 |
+
@classmethod
|
146 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
147 |
+
cls._set_token_in_kwargs(kwargs)
|
148 |
+
|
149 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
150 |
+
|
151 |
+
# get the vision config dict if we are loading from SiglipConfig
|
152 |
+
if config_dict.get("model_type") == "siglip":
|
153 |
+
config_dict = config_dict["vision_config"]
|
154 |
+
|
155 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
156 |
+
logger.warning(
|
157 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
158 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
159 |
+
)
|
160 |
+
|
161 |
+
return cls.from_dict(config_dict, **kwargs)
|
162 |
+
|
163 |
+
|
164 |
+
class ImpConfig(PhiConfig):
|
165 |
+
model_type = "imp"
|
166 |
+
|
167 |
+
def __init__(self, **kwargs):
|
168 |
+
super().__init__(**kwargs)
|
169 |
+
self.image_token_index = getattr(self, "image_token_index", 50296)
|
170 |
+
self.image_token = getattr(self, "image_token", "<image>")
|
171 |
+
|
172 |
+
if not hasattr(self, "vision_tower_config") and hasattr(self, "mm_vision_tower"):
|
173 |
+
vision_tower_config = SiglipVisionConfig.from_pretrained(self.mm_vision_tower)
|
174 |
+
self.vision_tower_config = vision_tower_config.to_diff_dict()
|
175 |
+
|
176 |
+
@property
|
177 |
+
def vision_tower_cfg(self):
|
178 |
+
cfg = SiglipVisionConfig.from_dict(self.vision_tower_config)
|
179 |
+
# imp-v1 only supports `patch` feature for now w/o cls token
|
180 |
+
# cfg.mm_vision_select_feature = self.mm_vision_select_feature
|
181 |
+
cfg.mm_vision_select_layer = self.mm_vision_select_layer
|
182 |
+
cfg.mm_vision_tower = self.mm_vision_tower
|
183 |
+
return cfg
|
modeling_imp.py
ADDED
@@ -0,0 +1,1262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) MILVLG team.
|
2 |
+
# Licensed under the Apache 2.0 license.
|
3 |
+
#
|
4 |
+
# Some code here is copied from the project Phi-2 (https://huggingface.co/microsoft/phi-2),
|
5 |
+
# SigLIP@transformers==4.37.0.dev0 (https://huggingface.co/google/siglip-so400m-patch14-384),
|
6 |
+
# and Llava (https://github.com/haotian-liu/LLaVA), and modified by
|
7 |
+
# Zhenwei Shao (shaozw@hdu.edu.cn) @ MILVLG. We thank them for their great works.
|
8 |
+
# And their original licenses and copyright should be inherited (see the statements
|
9 |
+
# in `configuration_imp.py` for more details).
|
10 |
+
|
11 |
+
|
12 |
+
# Be careful: The way how `past_key_values.seqlen_offset` is updated is modified from
|
13 |
+
# the implementation of original Phi-2. See the comments below for details.
|
14 |
+
|
15 |
+
from __future__ import annotations
|
16 |
+
import os
|
17 |
+
import math
|
18 |
+
import re
|
19 |
+
from dataclasses import dataclass, field
|
20 |
+
from typing import Any, Dict, Optional, Tuple, Union, List
|
21 |
+
from abc import ABC, abstractmethod
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.nn as nn
|
25 |
+
from einops import rearrange, repeat
|
26 |
+
from transformers import (
|
27 |
+
PretrainedConfig,
|
28 |
+
PreTrainedModel,
|
29 |
+
AutoConfig,
|
30 |
+
AutoModelForCausalLM
|
31 |
+
)
|
32 |
+
from transformers.activations import ACT2FN
|
33 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
34 |
+
import sys
|
35 |
+
from .configuration_imp import PhiConfig, ImpConfig
|
36 |
+
from .vision_encoder import VisionTower
|
37 |
+
|
38 |
+
try:
|
39 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
40 |
+
from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
|
41 |
+
from flash_attn.modules.mha import FlashCrossAttention, FlashSelfAttention
|
42 |
+
from flash_attn.ops.fused_dense import FusedDense
|
43 |
+
except:
|
44 |
+
pad_input, unpad_input = None, None
|
45 |
+
FlashRotaryEmbedding = None
|
46 |
+
FlashSelfAttention, FlashCrossAttention = None, None
|
47 |
+
FusedDense = None
|
48 |
+
|
49 |
+
|
50 |
+
@dataclass
|
51 |
+
class InferenceParams:
|
52 |
+
"""Inference parameters passed to model to efficiently calculate
|
53 |
+
and store context during inference.
|
54 |
+
|
55 |
+
Reference:
|
56 |
+
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
max_seqlen: Maximum sequence length.
|
60 |
+
max_batch_size: Maximum batch size.
|
61 |
+
seqlen_offset: Sequence length offset.
|
62 |
+
batch_size_offset: Batch size offset.
|
63 |
+
key_value_memory_dict: Key value memory dictionary.
|
64 |
+
lengths_per_sample: Lengths per sample.
|
65 |
+
|
66 |
+
"""
|
67 |
+
|
68 |
+
max_seqlen: int = field(metadata={"help": "Maximum sequence length."})
|
69 |
+
|
70 |
+
max_batch_size: int = field(metadata={"help": "Maximum batch size."})
|
71 |
+
|
72 |
+
seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
|
73 |
+
|
74 |
+
batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
|
75 |
+
|
76 |
+
key_value_memory_dict: Dict[str, Any] = field(
|
77 |
+
default_factory=dict, metadata={"help": "Key value memory dictionary."}
|
78 |
+
)
|
79 |
+
|
80 |
+
lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."})
|
81 |
+
|
82 |
+
|
83 |
+
class Embedding(nn.Module):
|
84 |
+
"""Token embedding with dropout."""
|
85 |
+
|
86 |
+
def __init__(self, config: PretrainedConfig) -> None:
|
87 |
+
super().__init__()
|
88 |
+
|
89 |
+
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
|
90 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
91 |
+
|
92 |
+
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
|
93 |
+
input_shape = input_ids.size()
|
94 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
95 |
+
|
96 |
+
hidden_states = self.wte(input_ids)
|
97 |
+
hidden_states = self.drop(hidden_states)
|
98 |
+
|
99 |
+
return hidden_states
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
def _apply_rotary_emb(
|
104 |
+
x: torch.FloatTensor,
|
105 |
+
cos: torch.FloatTensor,
|
106 |
+
sin: torch.FloatTensor,
|
107 |
+
) -> torch.FloatTensor:
|
108 |
+
_, seqlen, _, _ = x.shape
|
109 |
+
_, rotary_dim = cos.shape
|
110 |
+
rotary_dim *= 2
|
111 |
+
|
112 |
+
x_rot = x[:, :, :, :rotary_dim]
|
113 |
+
x_pass = x[:, :, :, rotary_dim:]
|
114 |
+
|
115 |
+
x1, x2 = x_rot.chunk(2, dim=-1)
|
116 |
+
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
117 |
+
x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]]
|
118 |
+
|
119 |
+
x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype)
|
120 |
+
|
121 |
+
return torch.cat([x_rot, x_pass], axis=-1)
|
122 |
+
|
123 |
+
|
124 |
+
def _apply_rotary_emb_kv(
|
125 |
+
kv: torch.FloatTensor,
|
126 |
+
cos: torch.FloatTensor,
|
127 |
+
sin: torch.FloatTensor,
|
128 |
+
cos_k: Optional[torch.FloatTensor] = None,
|
129 |
+
sin_k: Optional[torch.FloatTensor] = None,
|
130 |
+
) -> torch.FloatTensor:
|
131 |
+
_, seqlen, _, _, _ = kv.shape
|
132 |
+
_, rotary_dim = cos.shape
|
133 |
+
rotary_dim *= 2
|
134 |
+
|
135 |
+
k_rot = kv[:, :, 0, :, :rotary_dim]
|
136 |
+
k_pass = kv[:, :, 0, :, rotary_dim:]
|
137 |
+
|
138 |
+
k1, k2 = k_rot.chunk(2, dim=-1)
|
139 |
+
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
140 |
+
k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]]
|
141 |
+
|
142 |
+
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype)
|
143 |
+
|
144 |
+
return torch.cat(
|
145 |
+
[
|
146 |
+
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
147 |
+
kv[:, :, 1:2, :, :],
|
148 |
+
],
|
149 |
+
axis=2,
|
150 |
+
)
|
151 |
+
|
152 |
+
|
153 |
+
def _apply_rotary_emb_qkv(
|
154 |
+
qkv: torch.FloatTensor,
|
155 |
+
cos: torch.FloatTensor,
|
156 |
+
sin: torch.FloatTensor,
|
157 |
+
cos_k: Optional[torch.FloatTensor] = None,
|
158 |
+
sin_k: Optional[torch.FloatTensor] = None,
|
159 |
+
) -> torch.FloatTensor:
|
160 |
+
_, seqlen, _, _, _ = qkv.shape
|
161 |
+
_, rotary_dim = cos.shape
|
162 |
+
rotary_dim *= 2
|
163 |
+
|
164 |
+
q_rot = qkv[:, :, 0, :, :rotary_dim]
|
165 |
+
q_pass = qkv[:, :, 0, :, rotary_dim:]
|
166 |
+
|
167 |
+
k_rot = qkv[:, :, 1, :, :rotary_dim]
|
168 |
+
k_pass = qkv[:, :, 1, :, rotary_dim:]
|
169 |
+
|
170 |
+
q1, q2 = q_rot.chunk(2, dim=-1)
|
171 |
+
k1, k2 = k_rot.chunk(2, dim=-1)
|
172 |
+
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
173 |
+
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
|
174 |
+
|
175 |
+
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
|
176 |
+
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
|
177 |
+
|
178 |
+
return torch.cat(
|
179 |
+
[
|
180 |
+
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
|
181 |
+
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
182 |
+
qkv[:, :, 2:3, :, :],
|
183 |
+
],
|
184 |
+
axis=2,
|
185 |
+
)
|
186 |
+
|
187 |
+
|
188 |
+
class RotaryEmbedding(nn.Module):
|
189 |
+
"""Rotary positional embedding (RoPE).
|
190 |
+
|
191 |
+
Reference:
|
192 |
+
RoFormer: Enhanced Transformer with Rotary Position Embedding.
|
193 |
+
https://arxiv.org/pdf/2104.09864.pdf.
|
194 |
+
|
195 |
+
"""
|
196 |
+
|
197 |
+
def __init__(
|
198 |
+
self,
|
199 |
+
dim: int,
|
200 |
+
base: int = 10000,
|
201 |
+
scale_base: Optional[float] = None,
|
202 |
+
pos_idx_in_fp32: bool = True,
|
203 |
+
max_position_embeddings: int = 2048,
|
204 |
+
device: Optional[str] = None,
|
205 |
+
**kwargs,
|
206 |
+
) -> None:
|
207 |
+
super().__init__()
|
208 |
+
|
209 |
+
if scale_base is not None:
|
210 |
+
raise NotImplementedError
|
211 |
+
|
212 |
+
self.dim = dim
|
213 |
+
self.base = float(base)
|
214 |
+
self.scale_base = scale_base
|
215 |
+
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
216 |
+
self.max_position_embeddings = max_position_embeddings
|
217 |
+
self.device = device
|
218 |
+
|
219 |
+
# Generate and save the inverse frequency buffer (non-trainable)
|
220 |
+
inv_freq = self._compute_inv_freq(device)
|
221 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
222 |
+
|
223 |
+
# Generate and save the scale buffer (non-trainable)
|
224 |
+
scale = (
|
225 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
226 |
+
if scale_base is not None
|
227 |
+
else None
|
228 |
+
)
|
229 |
+
self.register_buffer("scale", scale, persistent=False)
|
230 |
+
|
231 |
+
# Initialize cached attributes since ONNX can't rely on dynamic initialization
|
232 |
+
self._update_cos_sin_cache(max_position_embeddings, device=device, dtype=torch.float32)
|
233 |
+
|
234 |
+
def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
|
235 |
+
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
236 |
+
|
237 |
+
def _update_cos_sin_cache(
|
238 |
+
self,
|
239 |
+
seqlen: int,
|
240 |
+
device: Optional[str] = None,
|
241 |
+
dtype: Optional[torch.dtype] = None,
|
242 |
+
) -> None:
|
243 |
+
self._seq_len_cached = seqlen
|
244 |
+
|
245 |
+
# fp32 is preferred since the output of `torch.arange` can be quite large
|
246 |
+
# and bf16 would lose a lot of precision
|
247 |
+
if self.pos_idx_in_fp32:
|
248 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
249 |
+
if self.inv_freq.dtype != torch.float32:
|
250 |
+
inv_freq = self._compute_inv_freq(device=device)
|
251 |
+
else:
|
252 |
+
inv_freq = self.inv_freq
|
253 |
+
else:
|
254 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
255 |
+
inv_freq = self.inv_freq
|
256 |
+
|
257 |
+
# `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP
|
258 |
+
freqs = torch.outer(t, inv_freq)
|
259 |
+
if self.scale is None:
|
260 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
261 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
262 |
+
else:
|
263 |
+
power = (
|
264 |
+
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
|
265 |
+
) / self.scale_base
|
266 |
+
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
267 |
+
|
268 |
+
# Force the scale multiplication to happen in fp32
|
269 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
270 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
271 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
272 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
273 |
+
|
274 |
+
def forward(
|
275 |
+
self,
|
276 |
+
qkv: torch.Tensor,
|
277 |
+
kv: Optional[torch.Tensor] = None,
|
278 |
+
seqlen_offset: int = 0,
|
279 |
+
**kwargs,
|
280 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
281 |
+
if (
|
282 |
+
self._seq_len_cached < qkv.shape[1] + seqlen_offset
|
283 |
+
or self._cos_cached.device != qkv.device
|
284 |
+
or self._cos_cached.dtype != qkv.dtype
|
285 |
+
or (self.training and self._cos_cached.is_inference())
|
286 |
+
):
|
287 |
+
self._update_cos_sin_cache(qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
|
288 |
+
|
289 |
+
if kv is None:
|
290 |
+
return _apply_rotary_emb_qkv(
|
291 |
+
qkv,
|
292 |
+
self._cos_cached[seqlen_offset:],
|
293 |
+
self._sin_cached[seqlen_offset:],
|
294 |
+
)
|
295 |
+
else:
|
296 |
+
q = _apply_rotary_emb(
|
297 |
+
qkv,
|
298 |
+
self._cos_cached[seqlen_offset:],
|
299 |
+
self._sin_cached[seqlen_offset:],
|
300 |
+
)
|
301 |
+
kv = _apply_rotary_emb_kv(
|
302 |
+
kv,
|
303 |
+
self._cos_cached[seqlen_offset:],
|
304 |
+
self._sin_cached[seqlen_offset:],
|
305 |
+
)
|
306 |
+
|
307 |
+
return q, kv
|
308 |
+
|
309 |
+
|
310 |
+
class MLP(nn.Module):
|
311 |
+
"""Multi-Layer Perceptron.
|
312 |
+
|
313 |
+
Reference:
|
314 |
+
Attention Is All You Need.
|
315 |
+
https://arxiv.org/pdf/1706.03762.pdf.
|
316 |
+
|
317 |
+
"""
|
318 |
+
|
319 |
+
def __init__(
|
320 |
+
self,
|
321 |
+
config: PretrainedConfig,
|
322 |
+
n_inner: Optional[int] = None,
|
323 |
+
act_fn: Optional[str] = None,
|
324 |
+
) -> None:
|
325 |
+
super().__init__()
|
326 |
+
|
327 |
+
act_fn = config.activation_function if act_fn is None else act_fn
|
328 |
+
|
329 |
+
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
|
330 |
+
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
|
331 |
+
|
332 |
+
self.fc1 = nn.Linear(config.n_embd, n_inner)
|
333 |
+
self.fc2 = nn.Linear(n_inner, config.n_embd)
|
334 |
+
self.act = ACT2FN[act_fn]
|
335 |
+
|
336 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
337 |
+
hidden_states = self.fc1(hidden_states)
|
338 |
+
hidden_states = self.act(hidden_states)
|
339 |
+
hidden_states = self.fc2(hidden_states)
|
340 |
+
|
341 |
+
return hidden_states
|
342 |
+
|
343 |
+
|
344 |
+
class SelfAttention(nn.Module):
|
345 |
+
"""Self-attention layer (compatible with PyTorch).
|
346 |
+
|
347 |
+
Reference:
|
348 |
+
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
349 |
+
|
350 |
+
"""
|
351 |
+
|
352 |
+
def __init__(
|
353 |
+
self,
|
354 |
+
causal: bool = True,
|
355 |
+
softmax_scale: Optional[float] = None,
|
356 |
+
attention_dropout: float = 0.0,
|
357 |
+
) -> None:
|
358 |
+
super().__init__()
|
359 |
+
|
360 |
+
self.causal = causal
|
361 |
+
self.softmax_scale = softmax_scale
|
362 |
+
self.drop = nn.Dropout(attention_dropout)
|
363 |
+
|
364 |
+
@torch.autocast("cpu", enabled=False)
|
365 |
+
@torch.autocast("cuda", enabled=False)
|
366 |
+
def forward(
|
367 |
+
self,
|
368 |
+
qkv: torch.FloatTensor,
|
369 |
+
causal: bool = None,
|
370 |
+
key_padding_mask: Optional[torch.BoolTensor] = None,
|
371 |
+
**kwargs,
|
372 |
+
) -> torch.FloatTensor:
|
373 |
+
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
374 |
+
q, k, v = qkv.unbind(dim=2)
|
375 |
+
|
376 |
+
q = q.to(torch.float32)
|
377 |
+
k = k.to(torch.float32)
|
378 |
+
|
379 |
+
causal = self.causal if causal is None else causal
|
380 |
+
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
381 |
+
|
382 |
+
# Autocast is manually disabled to avoid `torch.einsum` performing the operation
|
383 |
+
# using float16, which might lead to overflow
|
384 |
+
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
385 |
+
|
386 |
+
if key_padding_mask is not None:
|
387 |
+
padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device)
|
388 |
+
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
389 |
+
|
390 |
+
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
391 |
+
|
392 |
+
if causal:
|
393 |
+
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
|
394 |
+
scores = scores + causal_mask.to(dtype=scores.dtype)
|
395 |
+
|
396 |
+
attention = torch.softmax(scores, dim=-1).to(v.dtype)
|
397 |
+
attention = self.drop(attention)
|
398 |
+
|
399 |
+
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
400 |
+
|
401 |
+
return output
|
402 |
+
|
403 |
+
|
404 |
+
class CrossAttention(nn.Module):
|
405 |
+
"""Cross-attention layer (compatible with PyTorch).
|
406 |
+
|
407 |
+
Reference:
|
408 |
+
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
409 |
+
|
410 |
+
"""
|
411 |
+
|
412 |
+
def __init__(
|
413 |
+
self,
|
414 |
+
causal: bool = True,
|
415 |
+
softmax_scale: Optional[float] = None,
|
416 |
+
attention_dropout: float = 0.0,
|
417 |
+
) -> None:
|
418 |
+
super().__init__()
|
419 |
+
|
420 |
+
self.causal = causal
|
421 |
+
self.softmax_scale = softmax_scale
|
422 |
+
self.drop = nn.Dropout(attention_dropout)
|
423 |
+
|
424 |
+
@torch.autocast("cpu", enabled=False)
|
425 |
+
@torch.autocast("cuda", enabled=False)
|
426 |
+
def forward(
|
427 |
+
self,
|
428 |
+
q: torch.FloatTensor,
|
429 |
+
kv: torch.FloatTensor,
|
430 |
+
causal: bool = None,
|
431 |
+
key_padding_mask: Optional[torch.BoolTensor] = None,
|
432 |
+
**kwargs,
|
433 |
+
) -> torch.FloatTensor:
|
434 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
435 |
+
seqlen_k = kv.shape[1]
|
436 |
+
|
437 |
+
if kv.shape[3] != q.shape[2]:
|
438 |
+
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
|
439 |
+
k, v = kv.unbind(dim=2)
|
440 |
+
|
441 |
+
q = q.to(torch.float32)
|
442 |
+
k = k.to(torch.float32)
|
443 |
+
|
444 |
+
causal = self.causal if causal is None else causal
|
445 |
+
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
446 |
+
|
447 |
+
# Autocast is manually disabled to avoid `torch.einsum` performing the operation
|
448 |
+
# using float16, which might lead to overflow
|
449 |
+
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
450 |
+
|
451 |
+
if key_padding_mask is not None:
|
452 |
+
padding_mask = torch.full(
|
453 |
+
(batch_size, seqlen_k),
|
454 |
+
-10000.0,
|
455 |
+
dtype=scores.dtype,
|
456 |
+
device=scores.device,
|
457 |
+
)
|
458 |
+
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
459 |
+
|
460 |
+
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
461 |
+
|
462 |
+
if causal:
|
463 |
+
rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1")
|
464 |
+
cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
|
465 |
+
causal_mask = cols > rows + seqlen_k - seqlen_q
|
466 |
+
|
467 |
+
scores = scores.masked_fill(causal_mask, -10000.0)
|
468 |
+
|
469 |
+
attention = torch.softmax(scores, dim=-1).to(v.dtype)
|
470 |
+
attention = self.drop(attention)
|
471 |
+
|
472 |
+
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
473 |
+
|
474 |
+
return output
|
475 |
+
|
476 |
+
|
477 |
+
def _find_mha_dims(
|
478 |
+
config: PretrainedConfig,
|
479 |
+
n_head: Optional[int] = None,
|
480 |
+
n_head_kv: Optional[int] = None,
|
481 |
+
head_dim: Optional[int] = None,
|
482 |
+
) -> Tuple[int, int]:
|
483 |
+
if n_head is None and head_dim is None:
|
484 |
+
head_dim = config.n_embd // config.n_head
|
485 |
+
n_head = config.n_head
|
486 |
+
elif n_head is None or head_dim is None:
|
487 |
+
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
|
488 |
+
|
489 |
+
if n_head_kv is None:
|
490 |
+
n_head_kv = getattr(config, "n_head_kv", None) or n_head
|
491 |
+
|
492 |
+
return n_head, n_head_kv, head_dim
|
493 |
+
|
494 |
+
|
495 |
+
def _update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor:
|
496 |
+
num_heads, head_dim = kv.shape[-2:]
|
497 |
+
|
498 |
+
if layer_idx not in inference_params.key_value_memory_dict:
|
499 |
+
inference_params.key_value_memory_dict[layer_idx] = torch.empty(
|
500 |
+
inference_params.max_batch_size,
|
501 |
+
inference_params.max_seqlen,
|
502 |
+
2,
|
503 |
+
num_heads,
|
504 |
+
head_dim,
|
505 |
+
dtype=kv.dtype,
|
506 |
+
device=kv.device,
|
507 |
+
)
|
508 |
+
|
509 |
+
batch_start = inference_params.batch_size_offset
|
510 |
+
batch_end = batch_start + kv.shape[0]
|
511 |
+
|
512 |
+
sequence_start = inference_params.seqlen_offset
|
513 |
+
sequence_end = sequence_start + kv.shape[1]
|
514 |
+
|
515 |
+
# When the current sequence length is equal to or larger than the maximum sequence length,
|
516 |
+
# we need to concatenate the current `kv` with the cached `kv` to expand its length
|
517 |
+
if sequence_end >= inference_params.max_seqlen:
|
518 |
+
inference_params.key_value_memory_dict[layer_idx] = torch.concatenate((inference_params.key_value_memory_dict[layer_idx], kv), dim=1)
|
519 |
+
|
520 |
+
inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
521 |
+
kv = inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, :sequence_end, ...]
|
522 |
+
|
523 |
+
return kv
|
524 |
+
|
525 |
+
|
526 |
+
class MHA(nn.Module):
|
527 |
+
"""Multi-head attention layer."""
|
528 |
+
|
529 |
+
def __init__(
|
530 |
+
self,
|
531 |
+
config: PretrainedConfig,
|
532 |
+
dtype: Optional[torch.dtype] = None,
|
533 |
+
device: Optional[str] = None,
|
534 |
+
rotary_dim: Optional[int] = None,
|
535 |
+
rotary_base: float = 10000.0,
|
536 |
+
rotary_scale_base: Optional[float] = None,
|
537 |
+
n_head: Optional[int] = None,
|
538 |
+
n_head_kv: Optional[int] = None,
|
539 |
+
head_dim: Optional[int] = None,
|
540 |
+
bias: bool = True,
|
541 |
+
causal: bool = True,
|
542 |
+
softmax_scale: Optional[float] = None,
|
543 |
+
layer_idx: Optional[int] = None,
|
544 |
+
return_residual: bool = False,
|
545 |
+
checkpointing: bool = False,
|
546 |
+
) -> None:
|
547 |
+
super().__init__()
|
548 |
+
|
549 |
+
# Rotary embedding
|
550 |
+
self.rotary_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
|
551 |
+
if self.rotary_dim > 0:
|
552 |
+
rotary_cls = FlashRotaryEmbedding if config.flash_rotary else RotaryEmbedding
|
553 |
+
if rotary_cls is None:
|
554 |
+
rotary_cls = RotaryEmbedding
|
555 |
+
|
556 |
+
rotary_kwargs = {}
|
557 |
+
if rotary_cls is RotaryEmbedding:
|
558 |
+
rotary_kwargs["max_position_embeddings"] = config.n_positions
|
559 |
+
|
560 |
+
self.rotary_emb = rotary_cls(
|
561 |
+
self.rotary_dim,
|
562 |
+
base=rotary_base,
|
563 |
+
scale_base=rotary_scale_base,
|
564 |
+
device=device,
|
565 |
+
**rotary_kwargs,
|
566 |
+
)
|
567 |
+
|
568 |
+
# MLP
|
569 |
+
self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
|
570 |
+
config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim
|
571 |
+
)
|
572 |
+
op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
|
573 |
+
hidden_size = config.n_embd
|
574 |
+
|
575 |
+
linear_cls = FusedDense if config.fused_dense else nn.Linear
|
576 |
+
if linear_cls is None:
|
577 |
+
linear_cls = nn.Linear
|
578 |
+
|
579 |
+
self.Wqkv = linear_cls(hidden_size, op_size, bias=bias, device=device, dtype=dtype)
|
580 |
+
self.out_proj = linear_cls(hidden_size, hidden_size, bias=bias, device=device, dtype=dtype)
|
581 |
+
|
582 |
+
# Attention
|
583 |
+
attn_cls = FlashSelfAttention if config.flash_attn else SelfAttention
|
584 |
+
if attn_cls is None:
|
585 |
+
attn_cls = SelfAttention
|
586 |
+
|
587 |
+
cross_attn_cls = FlashCrossAttention if config.flash_attn else CrossAttention
|
588 |
+
if cross_attn_cls is None:
|
589 |
+
cross_attn_cls = CrossAttention
|
590 |
+
|
591 |
+
self.inner_attn = attn_cls(
|
592 |
+
causal=causal,
|
593 |
+
softmax_scale=softmax_scale,
|
594 |
+
attention_dropout=config.attn_pdrop,
|
595 |
+
)
|
596 |
+
self.inner_cross_attn = cross_attn_cls(
|
597 |
+
causal=causal,
|
598 |
+
softmax_scale=softmax_scale,
|
599 |
+
attention_dropout=config.attn_pdrop,
|
600 |
+
)
|
601 |
+
|
602 |
+
self.flash_attn = config.flash_attn and attn_cls is FlashSelfAttention
|
603 |
+
self.layer_idx = layer_idx
|
604 |
+
self.return_residual = return_residual
|
605 |
+
self.checkpointing = checkpointing
|
606 |
+
|
607 |
+
def _forward_self_attn(
|
608 |
+
self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
|
609 |
+
) -> torch.FloatTensor:
|
610 |
+
qkv = self.Wqkv(x)
|
611 |
+
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
612 |
+
|
613 |
+
if self.rotary_dim > 0:
|
614 |
+
qkv = self.rotary_emb(qkv)
|
615 |
+
|
616 |
+
if self.flash_attn:
|
617 |
+
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
618 |
+
|
619 |
+
cu_seqlens, max_seqlen = None, None
|
620 |
+
if key_padding_mask is not None:
|
621 |
+
# If `key_padding_mask` is supplied, we need to unpad the input and retrieve
|
622 |
+
# the `cu_seqlens` and `max_seqlen` to be used by `flash-attn`
|
623 |
+
qkv, indices, cu_seqlens, max_seqlen = unpad_input(qkv, key_padding_mask)
|
624 |
+
|
625 |
+
if self.checkpointing:
|
626 |
+
attn_output = torch.utils.checkpoint.checkpoint(
|
627 |
+
self.inner_attn, qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
|
628 |
+
)
|
629 |
+
else:
|
630 |
+
attn_output = self.inner_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen).to(qkv.device)
|
631 |
+
|
632 |
+
# If `key_padding_mask` is supplied, we need to pad the output back to the original shape
|
633 |
+
return pad_input(attn_output, indices, batch_size, seqlen) if key_padding_mask is not None else attn_output
|
634 |
+
|
635 |
+
if self.checkpointing:
|
636 |
+
return torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, key_padding_mask=key_padding_mask)
|
637 |
+
|
638 |
+
return self.inner_attn(qkv, key_padding_mask=key_padding_mask)
|
639 |
+
|
640 |
+
def _forward_cross_attn(
|
641 |
+
self,
|
642 |
+
x: torch.FloatTensor,
|
643 |
+
past_key_values: Optional[InferenceParams],
|
644 |
+
key_padding_mask: Optional[torch.BoolTensor],
|
645 |
+
) -> torch.FloatTensor:
|
646 |
+
batch_size = x.shape[0]
|
647 |
+
|
648 |
+
qkv = self.Wqkv(x)
|
649 |
+
|
650 |
+
q = qkv[..., : self.n_head * self.head_dim]
|
651 |
+
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
|
652 |
+
|
653 |
+
kv = qkv[..., self.n_head * self.head_dim :]
|
654 |
+
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
|
655 |
+
|
656 |
+
seqlen_offset = past_key_values.seqlen_offset if past_key_values is not None else 0
|
657 |
+
causal = None if seqlen_offset == 0 else False
|
658 |
+
if self.rotary_dim > 0:
|
659 |
+
q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
|
660 |
+
|
661 |
+
if past_key_values is not None:
|
662 |
+
kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
|
663 |
+
|
664 |
+
if self.flash_attn:
|
665 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
666 |
+
seqlen_k = kv.shape[1]
|
667 |
+
|
668 |
+
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k = (
|
669 |
+
None,
|
670 |
+
None,
|
671 |
+
None,
|
672 |
+
None,
|
673 |
+
)
|
674 |
+
if key_padding_mask is not None:
|
675 |
+
kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask)
|
676 |
+
|
677 |
+
if seqlen_q == 1:
|
678 |
+
key_padding_mask = torch.ones(batch_size, 1, device=q.device)
|
679 |
+
elif seqlen_q != seqlen_k:
|
680 |
+
key_padding_mask = key_padding_mask[:, -seqlen_q:]
|
681 |
+
|
682 |
+
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, key_padding_mask)
|
683 |
+
|
684 |
+
if self.checkpointing:
|
685 |
+
attn_output = torch.utils.checkpoint.checkpoint(
|
686 |
+
self.inner_cross_attn,
|
687 |
+
q,
|
688 |
+
kv,
|
689 |
+
causal=causal,
|
690 |
+
cu_seqlens=cu_seqlens_q,
|
691 |
+
max_seqlen=max_seqlen_q,
|
692 |
+
cu_seqlens_k=cu_seqlens_k,
|
693 |
+
max_seqlen_k=max_seqlen_k,
|
694 |
+
)
|
695 |
+
else:
|
696 |
+
attn_output = self.inner_cross_attn(
|
697 |
+
q,
|
698 |
+
kv,
|
699 |
+
causal=causal,
|
700 |
+
cu_seqlens=cu_seqlens_q,
|
701 |
+
max_seqlen=max_seqlen_q,
|
702 |
+
cu_seqlens_k=cu_seqlens_k,
|
703 |
+
max_seqlen_k=max_seqlen_k,
|
704 |
+
)
|
705 |
+
|
706 |
+
return (
|
707 |
+
pad_input(attn_output, indices_q, batch_size, max_seqlen_q)
|
708 |
+
if key_padding_mask is not None
|
709 |
+
else attn_output
|
710 |
+
)
|
711 |
+
|
712 |
+
if self.checkpointing:
|
713 |
+
return torch.utils.checkpoint.checkpoint(
|
714 |
+
self.inner_cross_attn,
|
715 |
+
q,
|
716 |
+
kv,
|
717 |
+
key_padding_mask=key_padding_mask,
|
718 |
+
causal=causal,
|
719 |
+
)
|
720 |
+
|
721 |
+
return self.inner_cross_attn(q, kv, key_padding_mask=key_padding_mask, causal=causal)
|
722 |
+
|
723 |
+
def forward(
|
724 |
+
self,
|
725 |
+
x: torch.FloatTensor,
|
726 |
+
past_key_values: Optional[InferenceParams] = None,
|
727 |
+
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
|
728 |
+
**kwargs,
|
729 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
730 |
+
if attention_mask is not None:
|
731 |
+
attention_mask = attention_mask.bool()
|
732 |
+
else:
|
733 |
+
attention_mask = None
|
734 |
+
|
735 |
+
# MHA
|
736 |
+
if self.n_head == self.n_head_kv:
|
737 |
+
if past_key_values is None:
|
738 |
+
# If `past_key_values` are not supplied, we run self-attention
|
739 |
+
attn_output = self._forward_self_attn(x, attention_mask)
|
740 |
+
else:
|
741 |
+
# If `past_key_values` are supplied, it means that we might have cached values and
|
742 |
+
# could take advantage of cross-attention
|
743 |
+
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
|
744 |
+
# MQA / GQA
|
745 |
+
else:
|
746 |
+
# Regardless of `past_key_values` being supplied or not, it always use cross-attention
|
747 |
+
# because `q` and `kv` lengths might be different
|
748 |
+
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
|
749 |
+
|
750 |
+
output = rearrange(attn_output, "... h d -> ... (h d)")
|
751 |
+
output = self.out_proj(output)
|
752 |
+
|
753 |
+
return output if not self.return_residual else (output, x)
|
754 |
+
|
755 |
+
|
756 |
+
class ParallelBlock(nn.Module):
|
757 |
+
"""Parallel block.
|
758 |
+
|
759 |
+
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
|
760 |
+
|
761 |
+
"""
|
762 |
+
|
763 |
+
def __init__(
|
764 |
+
self,
|
765 |
+
config: PretrainedConfig,
|
766 |
+
block_idx: Optional[int] = None,
|
767 |
+
) -> None:
|
768 |
+
super().__init__()
|
769 |
+
|
770 |
+
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
771 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
772 |
+
self.block_idx = block_idx
|
773 |
+
|
774 |
+
self.mixer = MHA(config, layer_idx=block_idx)
|
775 |
+
self.mlp = MLP(config)
|
776 |
+
|
777 |
+
def forward(
|
778 |
+
self,
|
779 |
+
hidden_states: torch.FloatTensor,
|
780 |
+
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
781 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
782 |
+
**kwargs,
|
783 |
+
) -> torch.FloatTensor:
|
784 |
+
residual = hidden_states
|
785 |
+
hidden_states = self.ln(hidden_states)
|
786 |
+
|
787 |
+
attn_outputs = self.mixer(
|
788 |
+
hidden_states,
|
789 |
+
past_key_values=past_key_values,
|
790 |
+
attention_mask=attention_mask,
|
791 |
+
)
|
792 |
+
if isinstance(attn_outputs, tuple):
|
793 |
+
attn_outputs = attn_outputs[0]
|
794 |
+
|
795 |
+
attn_outputs = self.resid_dropout(attn_outputs)
|
796 |
+
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
|
797 |
+
|
798 |
+
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
799 |
+
|
800 |
+
return hidden_states
|
801 |
+
|
802 |
+
|
803 |
+
class CausalLMHead(nn.Module):
|
804 |
+
"""Causal Language Modeling head.
|
805 |
+
|
806 |
+
Reference:
|
807 |
+
Improving Language Understanding by Generative Pre-Training.
|
808 |
+
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
809 |
+
|
810 |
+
"""
|
811 |
+
|
812 |
+
def __init__(self, config: PretrainedConfig) -> None:
|
813 |
+
super().__init__()
|
814 |
+
|
815 |
+
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
816 |
+
self.linear = nn.Linear(config.n_embd, config.vocab_size)
|
817 |
+
|
818 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
819 |
+
hidden_states = self.ln(hidden_states)
|
820 |
+
logits = self.linear(hidden_states).to(torch.float32)
|
821 |
+
|
822 |
+
return logits
|
823 |
+
|
824 |
+
|
825 |
+
class PhiPreTrainedModel(PreTrainedModel):
|
826 |
+
"""Phi pre-trained model."""
|
827 |
+
|
828 |
+
config_class = PhiConfig
|
829 |
+
base_model_prefix = "transformer"
|
830 |
+
supports_gradient_checkpointing = True
|
831 |
+
_no_split_modules = ["ParallelBlock", "CLIPEncoderLayer", "Block"]
|
832 |
+
|
833 |
+
def __init__(self, *inputs, **kwargs) -> None:
|
834 |
+
super().__init__(*inputs, **kwargs)
|
835 |
+
|
836 |
+
def _init_weights(self, module: nn.Module) -> None:
|
837 |
+
if isinstance(module, (nn.Linear,)):
|
838 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
839 |
+
if module.bias is not None:
|
840 |
+
module.bias.data.zero_()
|
841 |
+
elif isinstance(module, nn.Embedding):
|
842 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
843 |
+
if module.padding_idx is not None:
|
844 |
+
module.weight.data[module.padding_idx].zero_()
|
845 |
+
elif isinstance(module, nn.LayerNorm):
|
846 |
+
if module.bias is not None:
|
847 |
+
module.bias.data.zero_()
|
848 |
+
module.weight.data.fill_(1.0)
|
849 |
+
|
850 |
+
def prepare_inputs_for_generation(
|
851 |
+
self,
|
852 |
+
input_ids: torch.LongTensor,
|
853 |
+
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
854 |
+
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
|
855 |
+
**kwargs,
|
856 |
+
) -> Dict[str, Any]:
|
857 |
+
if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
|
858 |
+
past_key_values = InferenceParams(
|
859 |
+
max_seqlen=self.config.n_positions,
|
860 |
+
max_batch_size=input_ids.shape[0],
|
861 |
+
seqlen_offset=0,
|
862 |
+
batch_size_offset=0,
|
863 |
+
key_value_memory_dict={},
|
864 |
+
lengths_per_sample=None,
|
865 |
+
)
|
866 |
+
else:
|
867 |
+
# ======================================================================
|
868 |
+
# Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
|
869 |
+
# inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, sequence_start:sequence_end, ...]
|
870 |
+
# past_key_values.seqlen_offset = input_ids.shape[1] - 1
|
871 |
+
# ======================================================================
|
872 |
+
# I change the way of updating `past_key_values.seqlen_offset` to make the inference of imp work.
|
873 |
+
# [Edited by zhenwei - 2024-01-20 21:15]
|
874 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
875 |
+
|
876 |
+
return {
|
877 |
+
"input_ids": input_ids,
|
878 |
+
"past_key_values": past_key_values,
|
879 |
+
"attention_mask": attention_mask,
|
880 |
+
}
|
881 |
+
|
882 |
+
|
883 |
+
class LlavaMetaModel(ABC):
|
884 |
+
"""
|
885 |
+
Define the APIs for building components that are related to image perceiving.
|
886 |
+
This implementation is based on the implementation from the Llave project.
|
887 |
+
"""
|
888 |
+
|
889 |
+
def get_vision_tower(self):
|
890 |
+
vision_tower = getattr(self, 'vision_tower', None)
|
891 |
+
if type(vision_tower) is list:
|
892 |
+
vision_tower = vision_tower[0]
|
893 |
+
return vision_tower
|
894 |
+
|
895 |
+
def build_vision_tower(self, config):
|
896 |
+
self.vision_tower = VisionTower(config.vision_tower_cfg)
|
897 |
+
|
898 |
+
def build_vision_projector(self, config):
|
899 |
+
projector_type = getattr(config, 'mm_projector_type', 'linear')
|
900 |
+
|
901 |
+
if projector_type == 'linear':
|
902 |
+
self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size)
|
903 |
+
return
|
904 |
+
|
905 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
906 |
+
if mlp_gelu_match:
|
907 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
908 |
+
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
909 |
+
for _ in range(1, mlp_depth):
|
910 |
+
modules.append(nn.GELU())
|
911 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
912 |
+
self.mm_projector = nn.Sequential(*modules)
|
913 |
+
return
|
914 |
+
|
915 |
+
if projector_type == 'identity':
|
916 |
+
self.mm_projector = nn.Identity()
|
917 |
+
return
|
918 |
+
|
919 |
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
920 |
+
|
921 |
+
|
922 |
+
class ImpModel(PhiPreTrainedModel, LlavaMetaModel):
|
923 |
+
"""Imp model. This implementation is modified from the implementation of Phi-2"""
|
924 |
+
|
925 |
+
config_class = ImpConfig
|
926 |
+
# _keys_to_ignore_on_load_missing = [""]
|
927 |
+
# _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
|
928 |
+
|
929 |
+
def __init__(self, config: ImpConfig) -> None:
|
930 |
+
super().__init__(config)
|
931 |
+
|
932 |
+
self.embd = Embedding(config)
|
933 |
+
self.h = nn.ModuleList([ParallelBlock(config, block_idx=i) for i in range(config.n_layer)])
|
934 |
+
self.gradient_checkpointing = False
|
935 |
+
|
936 |
+
if hasattr(config, "mm_vision_tower"):
|
937 |
+
self.build_vision_tower(config)
|
938 |
+
self.build_vision_projector(config)
|
939 |
+
|
940 |
+
self.post_init()
|
941 |
+
|
942 |
+
def embed_tokens(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
|
943 |
+
return self.embd(input_ids)[0]
|
944 |
+
|
945 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
946 |
+
return self.embd.wte
|
947 |
+
|
948 |
+
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
949 |
+
self.embd.wte = new_embeddings
|
950 |
+
|
951 |
+
def forward(
|
952 |
+
self,
|
953 |
+
input_ids: torch.LongTensor,
|
954 |
+
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
955 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
956 |
+
inputs_embeds: Optional[torch.FloatTensor] = None
|
957 |
+
) -> torch.FloatTensor:
|
958 |
+
|
959 |
+
if inputs_embeds is None:
|
960 |
+
hidden_states = self.embd(input_ids)
|
961 |
+
else:
|
962 |
+
hidden_states = inputs_embeds
|
963 |
+
|
964 |
+
for layer in self.h:
|
965 |
+
if self.gradient_checkpointing and self.training:
|
966 |
+
|
967 |
+
def create_custom_forward(module):
|
968 |
+
def custom_forward(*inputs):
|
969 |
+
# None for past_key_value
|
970 |
+
return module(*inputs)
|
971 |
+
|
972 |
+
return custom_forward
|
973 |
+
|
974 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
975 |
+
create_custom_forward(layer),
|
976 |
+
hidden_states,
|
977 |
+
None,
|
978 |
+
attention_mask,
|
979 |
+
)
|
980 |
+
else:
|
981 |
+
hidden_states = layer(
|
982 |
+
hidden_states,
|
983 |
+
past_key_values=past_key_values,
|
984 |
+
attention_mask=attention_mask,
|
985 |
+
)
|
986 |
+
|
987 |
+
# I change the way of updating `past_key_values.seqlen_offset` to make the inference of imp work.
|
988 |
+
# [Edited by zhenwei - 2024-01-20 21:15]
|
989 |
+
if past_key_values is not None: # FIXME: when multi-batch inference, it is a bug
|
990 |
+
past_key_values.seqlen_offset += hidden_states.shape[1]
|
991 |
+
|
992 |
+
return hidden_states
|
993 |
+
|
994 |
+
|
995 |
+
class LlavaMetaForCausalLM(ABC):
|
996 |
+
"""This implementation is based on the implementation from the Llave project."""
|
997 |
+
|
998 |
+
def init_constants(self, config):
|
999 |
+
self.IGNORE_INDEX = getattr(config, 'ignore_index', -100)
|
1000 |
+
self.IMAGE_TOKEN_INDEX = getattr(config, 'image_token_index', 50296)
|
1001 |
+
self.DEFAULT_IMAGE_TOKEN = getattr(config, 'image_token', "<image>")
|
1002 |
+
|
1003 |
+
@abstractmethod
|
1004 |
+
def get_model(self):
|
1005 |
+
pass
|
1006 |
+
|
1007 |
+
def get_vision_tower(self):
|
1008 |
+
return self.get_model().get_vision_tower()
|
1009 |
+
|
1010 |
+
def encode_images(self, images):
|
1011 |
+
image_features = self.get_model().get_vision_tower()(images)
|
1012 |
+
image_features = self.get_model().mm_projector(image_features)
|
1013 |
+
return image_features
|
1014 |
+
|
1015 |
+
def prepare_inputs_labels_for_multimodal(
|
1016 |
+
self, input_ids, position_ids, attention_mask, past_key_values, labels, images
|
1017 |
+
):
|
1018 |
+
vision_tower = self.get_vision_tower()
|
1019 |
+
# if vision_tower is None or images is None or past_key_values.seqlen_offset != 0:
|
1020 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
1021 |
+
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
|
1022 |
+
target_shape = past_key_values.seqlen_offset + 1
|
1023 |
+
# inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, sequence_start:sequence_end, ...]
|
1024 |
+
attention_mask = torch.cat((attention_mask, torch.ones(
|
1025 |
+
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
|
1026 |
+
dtype=attention_mask.dtype,
|
1027 |
+
device=attention_mask.device
|
1028 |
+
)), dim=1)
|
1029 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
1030 |
+
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
1031 |
+
|
1032 |
+
if type(images) is list or images.ndim == 5:
|
1033 |
+
concat_images = torch.cat([image for image in images], dim=0)
|
1034 |
+
concat_images = concat_images.to(device=self.device, dtype=vision_tower.dtype)
|
1035 |
+
image_features = self.encode_images(concat_images)
|
1036 |
+
split_sizes = [image.shape[0] for image in images]
|
1037 |
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
1038 |
+
image_features = [x.flatten(0, 1).to(self.device) for x in image_features]
|
1039 |
+
else:
|
1040 |
+
images = images.to(device=self.device, dtype=vision_tower.dtype)
|
1041 |
+
image_features = self.encode_images(images).to(self.device)
|
1042 |
+
|
1043 |
+
# TODO: image start / end is not implemented here to support pretraining.
|
1044 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
1045 |
+
raise NotImplementedError
|
1046 |
+
|
1047 |
+
# Let's just add dummy tensors if they do not exist,
|
1048 |
+
# it is a headache to deal with None all the time.
|
1049 |
+
# But it is not ideal, and if you have a better idea,
|
1050 |
+
# please open an issue / submit a PR, thanks.
|
1051 |
+
_labels = labels
|
1052 |
+
_position_ids = position_ids
|
1053 |
+
_attention_mask = attention_mask
|
1054 |
+
if attention_mask is None:
|
1055 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
1056 |
+
else:
|
1057 |
+
attention_mask = attention_mask.bool()
|
1058 |
+
if position_ids is None:
|
1059 |
+
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
1060 |
+
if labels is None:
|
1061 |
+
labels = torch.full_like(input_ids, self.IGNORE_INDEX)
|
1062 |
+
|
1063 |
+
# remove the padding using attention_mask -- TODO: double check
|
1064 |
+
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
|
1065 |
+
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
|
1066 |
+
|
1067 |
+
new_input_embeds = []
|
1068 |
+
new_labels = []
|
1069 |
+
cur_image_idx = 0
|
1070 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
1071 |
+
num_images = (cur_input_ids == self.IMAGE_TOKEN_INDEX).sum()
|
1072 |
+
if num_images == 0:
|
1073 |
+
cur_image_features = image_features[cur_image_idx]
|
1074 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
|
1075 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
|
1076 |
+
new_input_embeds.append(cur_input_embeds)
|
1077 |
+
new_labels.append(labels[batch_idx])
|
1078 |
+
cur_image_idx += 1
|
1079 |
+
continue
|
1080 |
+
|
1081 |
+
image_token_indices = [-1] + torch.where(cur_input_ids == self.IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
|
1082 |
+
cur_input_ids_noim = []
|
1083 |
+
cur_labels = labels[batch_idx]
|
1084 |
+
cur_labels_noim = []
|
1085 |
+
for i in range(len(image_token_indices) - 1):
|
1086 |
+
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
|
1087 |
+
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
|
1088 |
+
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
1089 |
+
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
|
1090 |
+
# print(cur_input_embeds.shape)
|
1091 |
+
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
1092 |
+
cur_new_input_embeds = []
|
1093 |
+
cur_new_labels = []
|
1094 |
+
|
1095 |
+
for i in range(num_images + 1):
|
1096 |
+
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
1097 |
+
cur_new_labels.append(cur_labels_noim[i])
|
1098 |
+
if i < num_images:
|
1099 |
+
cur_image_features = image_features[cur_image_idx]
|
1100 |
+
cur_image_idx += 1
|
1101 |
+
cur_new_input_embeds.append(cur_image_features)
|
1102 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), self.IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
|
1103 |
+
|
1104 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
1105 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
1106 |
+
|
1107 |
+
new_input_embeds.append(cur_new_input_embeds)
|
1108 |
+
new_labels.append(cur_new_labels)
|
1109 |
+
|
1110 |
+
# Truncate sequences to max length as image embeddings can make the sequence longer
|
1111 |
+
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
|
1112 |
+
if tokenizer_model_max_length is not None:
|
1113 |
+
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
|
1114 |
+
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
1115 |
+
|
1116 |
+
# Combine them
|
1117 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
1118 |
+
batch_size = len(new_input_embeds)
|
1119 |
+
|
1120 |
+
new_input_embeds_padded = []
|
1121 |
+
new_labels_padded = torch.full((batch_size, max_len), self.IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
|
1122 |
+
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
|
1123 |
+
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
|
1124 |
+
|
1125 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
|
1126 |
+
cur_len = cur_new_embed.shape[0]
|
1127 |
+
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
|
1128 |
+
new_input_embeds_padded.append(torch.cat((
|
1129 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
|
1130 |
+
cur_new_embed
|
1131 |
+
), dim=0))
|
1132 |
+
if cur_len > 0:
|
1133 |
+
new_labels_padded[i, -cur_len:] = cur_new_labels
|
1134 |
+
attention_mask[i, -cur_len:] = True
|
1135 |
+
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
1136 |
+
else:
|
1137 |
+
new_input_embeds_padded.append(torch.cat((
|
1138 |
+
cur_new_embed,
|
1139 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
|
1140 |
+
), dim=0))
|
1141 |
+
if cur_len > 0:
|
1142 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
1143 |
+
attention_mask[i, :cur_len] = True
|
1144 |
+
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
1145 |
+
|
1146 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
1147 |
+
|
1148 |
+
if _labels is None:
|
1149 |
+
new_labels = None
|
1150 |
+
else:
|
1151 |
+
new_labels = new_labels_padded
|
1152 |
+
|
1153 |
+
if _attention_mask is None:
|
1154 |
+
attention_mask = None
|
1155 |
+
else:
|
1156 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
1157 |
+
|
1158 |
+
if _position_ids is None:
|
1159 |
+
position_ids = None
|
1160 |
+
|
1161 |
+
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
|
1162 |
+
|
1163 |
+
|
1164 |
+
class ImpForCausalLM(PhiPreTrainedModel, LlavaMetaForCausalLM):
|
1165 |
+
"""Imp for Causal Language Modeling."""
|
1166 |
+
|
1167 |
+
# _keys_to_ignore_on_load_missing = [""]
|
1168 |
+
# _keys_to_ignore_on_load_unexpected = [r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
|
1169 |
+
config_class = ImpConfig
|
1170 |
+
|
1171 |
+
def __init__(self, config: ImpConfig) -> None:
|
1172 |
+
super().__init__(config)
|
1173 |
+
|
1174 |
+
self.transformer = ImpModel(config)
|
1175 |
+
self.lm_head = CausalLMHead(config)
|
1176 |
+
|
1177 |
+
self.post_init()
|
1178 |
+
self.init_constants(config)
|
1179 |
+
|
1180 |
+
def get_output_embeddings(self) -> nn.Linear:
|
1181 |
+
return self.lm_head.linear
|
1182 |
+
|
1183 |
+
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
|
1184 |
+
self.lm_head.linear = new_embeddings
|
1185 |
+
|
1186 |
+
def get_model(self):
|
1187 |
+
return self.transformer
|
1188 |
+
|
1189 |
+
def image_preprocess(self, images):
|
1190 |
+
return self.get_vision_tower().image_processor(images)['pixel_values']
|
1191 |
+
|
1192 |
+
def backbone_forward(
|
1193 |
+
self,
|
1194 |
+
input_ids: torch.LongTensor,
|
1195 |
+
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
1196 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
1197 |
+
labels: Optional[torch.LongTensor] = None,
|
1198 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1199 |
+
**kwargs,
|
1200 |
+
) -> CausalLMOutputWithPast:
|
1201 |
+
hidden_states = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds)
|
1202 |
+
lm_logits = self.lm_head(hidden_states)
|
1203 |
+
|
1204 |
+
return CausalLMOutputWithPast(loss=None, logits=lm_logits, past_key_values=past_key_values)
|
1205 |
+
|
1206 |
+
def forward(
|
1207 |
+
self,
|
1208 |
+
input_ids: torch.LongTensor = None,
|
1209 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1210 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1211 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1212 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1213 |
+
labels: Optional[torch.LongTensor] = None,
|
1214 |
+
use_cache: Optional[bool] = None,
|
1215 |
+
output_attentions: Optional[bool] = None,
|
1216 |
+
output_hidden_states: Optional[bool] = None,
|
1217 |
+
images: Optional[torch.FloatTensor] = None,
|
1218 |
+
return_dict: Optional[bool] = None,
|
1219 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1220 |
+
|
1221 |
+
if inputs_embeds is None:
|
1222 |
+
(
|
1223 |
+
input_ids,
|
1224 |
+
position_ids,
|
1225 |
+
attention_mask,
|
1226 |
+
past_key_values,
|
1227 |
+
inputs_embeds,
|
1228 |
+
labels
|
1229 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
1230 |
+
input_ids,
|
1231 |
+
position_ids,
|
1232 |
+
attention_mask,
|
1233 |
+
past_key_values,
|
1234 |
+
labels,
|
1235 |
+
images
|
1236 |
+
)
|
1237 |
+
|
1238 |
+
return self.backbone_forward(
|
1239 |
+
input_ids=input_ids,
|
1240 |
+
attention_mask=attention_mask,
|
1241 |
+
position_ids=position_ids,
|
1242 |
+
past_key_values=past_key_values,
|
1243 |
+
inputs_embeds=inputs_embeds,
|
1244 |
+
labels=labels,
|
1245 |
+
use_cache=use_cache,
|
1246 |
+
output_attentions=output_attentions,
|
1247 |
+
output_hidden_states=output_hidden_states,
|
1248 |
+
return_dict=return_dict
|
1249 |
+
)
|
1250 |
+
|
1251 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
1252 |
+
images = kwargs.pop("images", None)
|
1253 |
+
_inputs = super().prepare_inputs_for_generation(
|
1254 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
1255 |
+
)
|
1256 |
+
if images is not None:
|
1257 |
+
_inputs['images'] = images
|
1258 |
+
return _inputs
|
1259 |
+
|
1260 |
+
|
1261 |
+
AutoConfig.register("imp", ImpConfig)
|
1262 |
+
AutoModelForCausalLM.register(ImpConfig, ImpForCausalLM)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c162cd9d0a121183d6c71232d2e8bfbcbd293e9d37b9ecfea8534800a5350efd
|
3 |
+
size 6374152890
|
vision_encoder.py
ADDED
@@ -0,0 +1,593 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) MILVLG team.
|
2 |
+
# Licensed under the Apache 2.0 license.
|
3 |
+
#
|
4 |
+
# Some code here is copied from the project Phi-2 (https://huggingface.co/microsoft/phi-2),
|
5 |
+
# SigLIP@transformers==4.37.0.dev0 (https://huggingface.co/google/siglip-so400m-patch14-384),
|
6 |
+
# and Llava (https://github.com/haotian-liu/LLaVA), and modified by
|
7 |
+
# Zhenwei Shao (shaozw@hdu.edu.cn) @ MILVLG. We thank them for their great works.
|
8 |
+
# And their original licenses and copyright should be inherited (see the statements
|
9 |
+
# in `configuration_imp.py` for more details).
|
10 |
+
|
11 |
+
|
12 |
+
from typing import Any, Optional, Tuple, Union, List, Dict
|
13 |
+
from dataclasses import dataclass
|
14 |
+
import math
|
15 |
+
import warnings
|
16 |
+
from functools import partial, reduce
|
17 |
+
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
from PIL import Image
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
from transformers.image_processing_utils import BatchFeature
|
26 |
+
from transformers.image_transforms import (
|
27 |
+
convert_to_rgb,
|
28 |
+
normalize,
|
29 |
+
rescale,
|
30 |
+
resize,
|
31 |
+
to_channel_dimension_format,
|
32 |
+
)
|
33 |
+
from transformers.image_utils import (
|
34 |
+
ChannelDimension,
|
35 |
+
PILImageResampling,
|
36 |
+
to_numpy_array,
|
37 |
+
)
|
38 |
+
from transformers.activations import ACT2FN
|
39 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
40 |
+
from transformers.modeling_utils import PreTrainedModel
|
41 |
+
from transformers.utils import ModelOutput
|
42 |
+
|
43 |
+
from .configuration_imp import SiglipVisionConfig
|
44 |
+
|
45 |
+
|
46 |
+
# ============================================================================
|
47 |
+
# A simple image preprocessor for SigLIP models.
|
48 |
+
# ============================================================================
|
49 |
+
|
50 |
+
def simple_image_processor(
|
51 |
+
images,
|
52 |
+
image_mean=(0.5, 0.5, 0.5),
|
53 |
+
image_std=(0.5, 0.5, 0.5),
|
54 |
+
size=(384, 384),
|
55 |
+
resample=PILImageResampling.BICUBIC,
|
56 |
+
rescale_factor=1 / 255,
|
57 |
+
data_format=ChannelDimension.FIRST,
|
58 |
+
return_tensors="pt"
|
59 |
+
):
|
60 |
+
|
61 |
+
if isinstance(images, Image.Image):
|
62 |
+
images = [images]
|
63 |
+
else:
|
64 |
+
assert isinstance(images, list)
|
65 |
+
|
66 |
+
transforms = [
|
67 |
+
convert_to_rgb,
|
68 |
+
to_numpy_array,
|
69 |
+
partial(resize, size=size, resample=resample, data_format=data_format),
|
70 |
+
partial(rescale, scale=rescale_factor, data_format=data_format),
|
71 |
+
partial(normalize, mean=image_mean, std=image_std, data_format=data_format),
|
72 |
+
partial(to_channel_dimension_format, channel_dim=data_format, input_channel_dim=data_format),
|
73 |
+
]
|
74 |
+
|
75 |
+
images = reduce(lambda x, f: [*map(f, x)], transforms, images)
|
76 |
+
data = {"pixel_values": images}
|
77 |
+
|
78 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
79 |
+
|
80 |
+
# ============================================================================
|
81 |
+
# Definitions for SigLIP models.
|
82 |
+
# ============================================================================
|
83 |
+
|
84 |
+
@dataclass
|
85 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
|
86 |
+
class SiglipVisionModelOutput(ModelOutput):
|
87 |
+
"""
|
88 |
+
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
92 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
93 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
94 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
95 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
96 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
97 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
98 |
+
|
99 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
100 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
101 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
102 |
+
sequence_length)`.
|
103 |
+
|
104 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
105 |
+
heads.
|
106 |
+
"""
|
107 |
+
|
108 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
109 |
+
last_hidden_state: torch.FloatTensor = None
|
110 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
111 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
112 |
+
|
113 |
+
|
114 |
+
class SiglipVisionEmbeddings(nn.Module):
|
115 |
+
def __init__(self, config: SiglipVisionConfig):
|
116 |
+
super().__init__()
|
117 |
+
self.config = config
|
118 |
+
self.embed_dim = config.hidden_size
|
119 |
+
self.image_size = config.image_size
|
120 |
+
self.patch_size = config.patch_size
|
121 |
+
|
122 |
+
self.patch_embedding = nn.Conv2d(
|
123 |
+
in_channels=config.num_channels,
|
124 |
+
out_channels=self.embed_dim,
|
125 |
+
kernel_size=self.patch_size,
|
126 |
+
stride=self.patch_size,
|
127 |
+
padding="valid",
|
128 |
+
)
|
129 |
+
|
130 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
131 |
+
self.num_positions = self.num_patches
|
132 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
133 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
134 |
+
|
135 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
136 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
137 |
+
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
138 |
+
|
139 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
140 |
+
return embeddings
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
class SiglipAttention(nn.Module):
|
145 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
146 |
+
|
147 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
148 |
+
def __init__(self, config):
|
149 |
+
super().__init__()
|
150 |
+
self.config = config
|
151 |
+
self.embed_dim = config.hidden_size
|
152 |
+
self.num_heads = config.num_attention_heads
|
153 |
+
self.head_dim = self.embed_dim // self.num_heads
|
154 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
155 |
+
raise ValueError(
|
156 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
157 |
+
f" {self.num_heads})."
|
158 |
+
)
|
159 |
+
self.scale = self.head_dim**-0.5
|
160 |
+
self.dropout = config.attention_dropout
|
161 |
+
|
162 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
163 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
164 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
165 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
166 |
+
|
167 |
+
def forward(
|
168 |
+
self,
|
169 |
+
hidden_states: torch.Tensor,
|
170 |
+
attention_mask: Optional[torch.Tensor] = None,
|
171 |
+
output_attentions: Optional[bool] = False,
|
172 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
173 |
+
"""Input shape: Batch x Time x Channel"""
|
174 |
+
|
175 |
+
batch_size, q_len, _ = hidden_states.size()
|
176 |
+
|
177 |
+
query_states = self.q_proj(hidden_states)
|
178 |
+
key_states = self.k_proj(hidden_states)
|
179 |
+
value_states = self.v_proj(hidden_states)
|
180 |
+
|
181 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
182 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
183 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
184 |
+
|
185 |
+
k_v_seq_len = key_states.shape[-2]
|
186 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
|
187 |
+
|
188 |
+
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
|
189 |
+
raise ValueError(
|
190 |
+
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
|
191 |
+
f" {attn_weights.size()}"
|
192 |
+
)
|
193 |
+
|
194 |
+
if attention_mask is not None:
|
195 |
+
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
|
196 |
+
raise ValueError(
|
197 |
+
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
|
198 |
+
)
|
199 |
+
attn_weights = attn_weights + attention_mask
|
200 |
+
|
201 |
+
# upcast attention to fp32
|
202 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
203 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
204 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
205 |
+
|
206 |
+
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
|
207 |
+
raise ValueError(
|
208 |
+
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
|
209 |
+
f" {attn_output.size()}"
|
210 |
+
)
|
211 |
+
|
212 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
213 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
214 |
+
|
215 |
+
attn_output = self.out_proj(attn_output)
|
216 |
+
|
217 |
+
return attn_output, attn_weights
|
218 |
+
|
219 |
+
|
220 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
|
221 |
+
class SiglipMLP(nn.Module):
|
222 |
+
def __init__(self, config):
|
223 |
+
super().__init__()
|
224 |
+
self.config = config
|
225 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
226 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
227 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
228 |
+
|
229 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
230 |
+
hidden_states = self.fc1(hidden_states)
|
231 |
+
hidden_states = self.activation_fn(hidden_states)
|
232 |
+
hidden_states = self.fc2(hidden_states)
|
233 |
+
return hidden_states
|
234 |
+
|
235 |
+
|
236 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
|
237 |
+
class SiglipEncoderLayer(nn.Module):
|
238 |
+
def __init__(self, config: SiglipVisionConfig):
|
239 |
+
super().__init__()
|
240 |
+
self.embed_dim = config.hidden_size
|
241 |
+
self.self_attn = SiglipAttention(config)
|
242 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
243 |
+
self.mlp = SiglipMLP(config)
|
244 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
245 |
+
|
246 |
+
# Ignore copy
|
247 |
+
def forward(
|
248 |
+
self,
|
249 |
+
hidden_states: torch.Tensor,
|
250 |
+
attention_mask: torch.Tensor,
|
251 |
+
output_attentions: Optional[bool] = False,
|
252 |
+
) -> Tuple[torch.FloatTensor]:
|
253 |
+
"""
|
254 |
+
Args:
|
255 |
+
hidden_states (`torch.FloatTensor`):
|
256 |
+
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
257 |
+
attention_mask (`torch.FloatTensor`):
|
258 |
+
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
259 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
260 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
261 |
+
returned tensors for more detail.
|
262 |
+
"""
|
263 |
+
residual = hidden_states
|
264 |
+
|
265 |
+
hidden_states = self.layer_norm1(hidden_states)
|
266 |
+
hidden_states, attn_weights = self.self_attn(
|
267 |
+
hidden_states=hidden_states,
|
268 |
+
attention_mask=attention_mask,
|
269 |
+
output_attentions=output_attentions,
|
270 |
+
)
|
271 |
+
hidden_states = residual + hidden_states
|
272 |
+
|
273 |
+
residual = hidden_states
|
274 |
+
hidden_states = self.layer_norm2(hidden_states)
|
275 |
+
hidden_states = self.mlp(hidden_states)
|
276 |
+
hidden_states = residual + hidden_states
|
277 |
+
|
278 |
+
outputs = (hidden_states,)
|
279 |
+
|
280 |
+
if output_attentions:
|
281 |
+
outputs += (attn_weights,)
|
282 |
+
|
283 |
+
return outputs
|
284 |
+
|
285 |
+
|
286 |
+
class SiglipPreTrainedModel(PreTrainedModel):
|
287 |
+
"""
|
288 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
289 |
+
models.
|
290 |
+
"""
|
291 |
+
|
292 |
+
config_class = SiglipVisionConfig
|
293 |
+
base_model_prefix = "siglip"
|
294 |
+
supports_gradient_checkpointing = True
|
295 |
+
|
296 |
+
def _init_weights(self, module):
|
297 |
+
"""Initialize the weights"""
|
298 |
+
pass
|
299 |
+
|
300 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
|
301 |
+
class SiglipEncoder(nn.Module):
|
302 |
+
"""
|
303 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
304 |
+
[`SiglipEncoderLayer`].
|
305 |
+
|
306 |
+
Args:
|
307 |
+
config: SiglipVisionConfig
|
308 |
+
"""
|
309 |
+
|
310 |
+
def __init__(self, config: SiglipVisionConfig):
|
311 |
+
super().__init__()
|
312 |
+
self.config = config
|
313 |
+
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
314 |
+
self.gradient_checkpointing = False
|
315 |
+
|
316 |
+
# Ignore copy
|
317 |
+
def forward(
|
318 |
+
self,
|
319 |
+
inputs_embeds,
|
320 |
+
attention_mask: Optional[torch.Tensor] = None,
|
321 |
+
output_attentions: Optional[bool] = None,
|
322 |
+
output_hidden_states: Optional[bool] = None,
|
323 |
+
return_dict: Optional[bool] = None,
|
324 |
+
) -> Union[Tuple, BaseModelOutput]:
|
325 |
+
r"""
|
326 |
+
Args:
|
327 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
328 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
329 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
330 |
+
than the model's internal embedding lookup matrix.
|
331 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
332 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
333 |
+
|
334 |
+
- 1 for tokens that are **not masked**,
|
335 |
+
- 0 for tokens that are **masked**.
|
336 |
+
|
337 |
+
[What are attention masks?](../glossary#attention-mask)
|
338 |
+
output_attentions (`bool`, *optional*):
|
339 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
340 |
+
returned tensors for more detail.
|
341 |
+
output_hidden_states (`bool`, *optional*):
|
342 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
343 |
+
for more detail.
|
344 |
+
return_dict (`bool`, *optional*):
|
345 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
346 |
+
"""
|
347 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
348 |
+
output_hidden_states = (
|
349 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
350 |
+
)
|
351 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
352 |
+
|
353 |
+
encoder_states = () if output_hidden_states else None
|
354 |
+
all_attentions = () if output_attentions else None
|
355 |
+
|
356 |
+
hidden_states = inputs_embeds
|
357 |
+
for encoder_layer in self.layers:
|
358 |
+
if output_hidden_states:
|
359 |
+
encoder_states = encoder_states + (hidden_states,)
|
360 |
+
if self.gradient_checkpointing and self.training:
|
361 |
+
layer_outputs = self._gradient_checkpointing_func(
|
362 |
+
encoder_layer.__call__,
|
363 |
+
hidden_states,
|
364 |
+
attention_mask,
|
365 |
+
output_attentions,
|
366 |
+
)
|
367 |
+
else:
|
368 |
+
layer_outputs = encoder_layer(
|
369 |
+
hidden_states,
|
370 |
+
attention_mask,
|
371 |
+
output_attentions=output_attentions,
|
372 |
+
)
|
373 |
+
|
374 |
+
hidden_states = layer_outputs[0]
|
375 |
+
|
376 |
+
if output_attentions:
|
377 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
378 |
+
|
379 |
+
if output_hidden_states:
|
380 |
+
encoder_states = encoder_states + (hidden_states,)
|
381 |
+
|
382 |
+
if not return_dict:
|
383 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
384 |
+
return BaseModelOutput(
|
385 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
386 |
+
)
|
387 |
+
|
388 |
+
|
389 |
+
class SiglipVisionTransformer(nn.Module):
|
390 |
+
def __init__(self, config: SiglipVisionConfig):
|
391 |
+
super().__init__()
|
392 |
+
self.config = config
|
393 |
+
embed_dim = config.hidden_size
|
394 |
+
|
395 |
+
self.embeddings = SiglipVisionEmbeddings(config)
|
396 |
+
self.encoder = SiglipEncoder(config)
|
397 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
398 |
+
self.head = SiglipMultiheadAttentionPoolingHead(config)
|
399 |
+
|
400 |
+
def forward(
|
401 |
+
self,
|
402 |
+
pixel_values,
|
403 |
+
output_attentions: Optional[bool] = None,
|
404 |
+
output_hidden_states: Optional[bool] = None,
|
405 |
+
return_dict: Optional[bool] = None,
|
406 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
407 |
+
r"""
|
408 |
+
Returns:
|
409 |
+
|
410 |
+
"""
|
411 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
412 |
+
output_hidden_states = (
|
413 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
414 |
+
)
|
415 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
416 |
+
|
417 |
+
hidden_states = self.embeddings(pixel_values)
|
418 |
+
|
419 |
+
encoder_outputs = self.encoder(
|
420 |
+
inputs_embeds=hidden_states,
|
421 |
+
output_attentions=output_attentions,
|
422 |
+
output_hidden_states=output_hidden_states,
|
423 |
+
return_dict=return_dict,
|
424 |
+
)
|
425 |
+
|
426 |
+
last_hidden_state = encoder_outputs[0]
|
427 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
428 |
+
|
429 |
+
pooled_output = self.head(last_hidden_state)
|
430 |
+
|
431 |
+
if not return_dict:
|
432 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
433 |
+
|
434 |
+
return BaseModelOutputWithPooling(
|
435 |
+
last_hidden_state=last_hidden_state,
|
436 |
+
pooler_output=pooled_output,
|
437 |
+
hidden_states=encoder_outputs.hidden_states,
|
438 |
+
attentions=encoder_outputs.attentions,
|
439 |
+
)
|
440 |
+
|
441 |
+
|
442 |
+
class SiglipMultiheadAttentionPoolingHead(nn.Module):
|
443 |
+
"""Multihead Attention Pooling."""
|
444 |
+
|
445 |
+
def __init__(self, config: SiglipVisionConfig):
|
446 |
+
super().__init__()
|
447 |
+
|
448 |
+
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
449 |
+
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
|
450 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
451 |
+
self.mlp = SiglipMLP(config)
|
452 |
+
|
453 |
+
def forward(self, hidden_state):
|
454 |
+
batch_size = hidden_state.shape[0]
|
455 |
+
probe = self.probe.repeat(batch_size, 1, 1)
|
456 |
+
|
457 |
+
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
|
458 |
+
|
459 |
+
residual = hidden_state
|
460 |
+
hidden_state = self.layernorm(hidden_state)
|
461 |
+
hidden_state = residual + self.mlp(hidden_state)
|
462 |
+
|
463 |
+
return hidden_state[:, 0]
|
464 |
+
|
465 |
+
|
466 |
+
class SiglipVisionModel(SiglipPreTrainedModel):
|
467 |
+
config_class = SiglipVisionConfig
|
468 |
+
main_input_name = "pixel_values"
|
469 |
+
_no_split_modules = ["SiglipEncoderLayer"]
|
470 |
+
|
471 |
+
def __init__(self, config: SiglipVisionConfig):
|
472 |
+
super().__init__(config)
|
473 |
+
|
474 |
+
self.vision_model = SiglipVisionTransformer(config)
|
475 |
+
|
476 |
+
# Initialize weights and apply final processing
|
477 |
+
self.post_init()
|
478 |
+
|
479 |
+
def get_input_embeddings(self) -> nn.Module:
|
480 |
+
return self.vision_model.embeddings.patch_embedding
|
481 |
+
|
482 |
+
def forward(
|
483 |
+
self,
|
484 |
+
pixel_values,
|
485 |
+
output_attentions: Optional[bool] = None,
|
486 |
+
output_hidden_states: Optional[bool] = None,
|
487 |
+
return_dict: Optional[bool] = None,
|
488 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
489 |
+
r"""
|
490 |
+
Returns:
|
491 |
+
|
492 |
+
Examples:
|
493 |
+
|
494 |
+
```python
|
495 |
+
>>> from PIL import Image
|
496 |
+
>>> import requests
|
497 |
+
>>> from transformers import AutoProcessor, SiglipVisionModel
|
498 |
+
|
499 |
+
>>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224")
|
500 |
+
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
501 |
+
|
502 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
503 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
504 |
+
|
505 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
506 |
+
|
507 |
+
>>> outputs = model(**inputs)
|
508 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
509 |
+
>>> pooled_output = outputs.pooler_output # pooled features
|
510 |
+
```"""
|
511 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
512 |
+
|
513 |
+
return self.vision_model(
|
514 |
+
pixel_values=pixel_values,
|
515 |
+
output_attentions=output_attentions,
|
516 |
+
output_hidden_states=output_hidden_states,
|
517 |
+
return_dict=return_dict,
|
518 |
+
)
|
519 |
+
|
520 |
+
|
521 |
+
# ============================================================================
|
522 |
+
# VisionTower module for Imp
|
523 |
+
# ============================================================================
|
524 |
+
|
525 |
+
class VisionTower(nn.Module):
|
526 |
+
def __init__(self, vision_tower_cfg, delay_load=False):
|
527 |
+
super().__init__()
|
528 |
+
|
529 |
+
self.is_loaded = False
|
530 |
+
|
531 |
+
self.config = vision_tower_cfg
|
532 |
+
self.vision_tower_name = vision_tower_cfg.mm_vision_tower
|
533 |
+
self.select_layer = vision_tower_cfg.mm_vision_select_layer
|
534 |
+
# self.select_feature = getattr(vision_tower_cfg, 'mm_vision_select_feature', 'patch')
|
535 |
+
|
536 |
+
self.image_processor = simple_image_processor
|
537 |
+
|
538 |
+
if not delay_load:
|
539 |
+
self.load_model()
|
540 |
+
else:
|
541 |
+
raise NotImplementedError("delay load is not implemented yet.")
|
542 |
+
|
543 |
+
def load_model(self):
|
544 |
+
if self.is_loaded:
|
545 |
+
return
|
546 |
+
|
547 |
+
# "google/siglip-so400m-patch14-384"
|
548 |
+
# self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
|
549 |
+
self.vision_tower = SiglipVisionModel(self.config)
|
550 |
+
del self.vision_tower.vision_model.encoder.layers[(self.select_layer + 1):]
|
551 |
+
self.vision_tower.vision_model.head = nn.Identity()
|
552 |
+
self.vision_tower.requires_grad_(False)
|
553 |
+
self.vision_tower.eval()
|
554 |
+
|
555 |
+
self.is_loaded = True
|
556 |
+
|
557 |
+
@torch.no_grad()
|
558 |
+
def forward(self, images):
|
559 |
+
if type(images) is list:
|
560 |
+
image_features = []
|
561 |
+
for image in images:
|
562 |
+
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
563 |
+
image_feature = image_forward_out.hidden_states[-1].to(image.dtype)
|
564 |
+
assert image_features.shape[-2] == 729
|
565 |
+
image_features.append(image_feature)
|
566 |
+
else:
|
567 |
+
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
568 |
+
image_features = image_forward_outs.hidden_states[-1].to(images.dtype)
|
569 |
+
assert image_features.shape[-2] == 729
|
570 |
+
|
571 |
+
return image_features
|
572 |
+
|
573 |
+
@property
|
574 |
+
def dummy_feature(self):
|
575 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
576 |
+
|
577 |
+
@property
|
578 |
+
def dtype(self):
|
579 |
+
for p in self.vision_tower.parameters():
|
580 |
+
return p.dtype
|
581 |
+
|
582 |
+
@property
|
583 |
+
def device(self):
|
584 |
+
for p in self.vision_tower.parameters():
|
585 |
+
return p.device
|
586 |
+
|
587 |
+
@property
|
588 |
+
def hidden_size(self):
|
589 |
+
return self.config.hidden_size
|
590 |
+
|
591 |
+
@property
|
592 |
+
def num_patches(self):
|
593 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|