MarioNapoli's picture
End of training
80a7e9e
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_1_0
metrics:
  - wer
model-index:
  - name: DynamicWav2Vec_TEST_10
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_1_0
          type: common_voice_1_0
          config: it
          split: test
          args: it
        metrics:
          - name: Wer
            type: wer
            value: 1

DynamicWav2Vec_TEST_10

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_1_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9344
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer
3.5792 2.68 400 2.9642 1.0
2.9539 5.35 800 2.9882 1.0
2.9476 8.03 1200 3.0384 1.0
2.9497 10.7 1600 2.9524 1.0
2.9562 13.38 2000 2.9332 1.0
2.945 16.05 2400 2.9858 1.0
2.9383 18.73 2800 2.9419 1.0
2.9311 21.4 3200 2.9328 1.0
2.9298 24.08 3600 2.9375 1.0
2.9273 26.76 4000 2.9352 1.0
2.921 29.43 4400 2.9344 1.0

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3