--- tags: - clip - e-commerce - fashion - multimodal retrieval - siglip library_name: open_clip pipeline_tag: zero-shot-image-classification license: apache-2.0 datasets: - Marqo/atlas - Marqo/deepfashion-inshop - Marqo/deepfashion-multimodal - Marqo/fashion200k - Marqo/iMaterialist - Marqo/KAGL - Marqo/polyvore language: - en metrics: - precision - recall - MRR --- # Marqo FashionSigLIP Model Card Marqo-FashionSigLIP leverages Generalised Contrastive Learning ([GCL](https://www.marqo.ai/blog/generalized-contrastive-learning-for-multi-modal-retrieval-and-ranking)) which allows the model to be trained on not just text descriptions but also categories, style, colors, materials, keywords and fine-details to provide highly relevant search results on fashion products. The model was fine-tuned from ViT-B-16-SigLIP (webli). **Github Page**: [Marqo-FashionCLIP](https://github.com/marqo-ai/marqo-FashionCLIP) ## Usage The model can be seamlessly used with [OpenCLIP](https://github.com/mlfoundations/open_clip) by ```python import open_clip model, _, _ = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP') _, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('ViT-B-16-SigLIP', 'webli') tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP') ``` ## Benchmark Results Average evaluation results on 6 public multimodal fashion datasets ([Atlas](https://huggingface.co/datasets/Marqo/atlas), [DeepFashion (In-shop)](https://huggingface.co/datasets/Marqo/deepfashion-inshop), [DeepFashion (Multimodal)](https://huggingface.co/datasets/Marqo/deepfashion-multimodal), [Fashion200k](https://huggingface.co/datasets/Marqo/fashion200k), [KAGL](https://huggingface.co/datasets/Marqo/KAGL), and [Polyvore](https://huggingface.co/datasets/Marqo/polyvore)) are reported below: **Text-To-Image (Averaged across 6 datasets)** | Model | AvgRecall | Recall@1 | Recall@10 | MRR | |----------------------------|-------------|------------|-------------|-----------| | FashionCLIP2.0 | 0.163 | 0.077 | 0.249 | 0.165 | | Marqo-FashionSigLIP | **0.231** | **0.121** | **0.340** | **0.239** | | OpenFashionCLIP | 0.132 | 0.060 | 0.204 | 0.135 | | ViT-B-16-laion2b_s34b_b88k | 0.174 | 0.088 | 0.261 | 0.180 | | ViT-B-16-SigLIP-webli | 0.212 | 0.111 | 0.314 | 0.214 | **Category-To-Product (Averaged across 5 datasets)** | Model | AvgP | P@1 | P@10 | MRR | |----------------------------|-----------|-----------|-----------|-----------| | FashionCLIP2.0 | 0.684 | 0.681 | 0.686 | 0.741 | | Marqo-FashionSigLIP | **0.737** | **0.758** | **0.716** | **0.812** | | OpenFashionCLIP | 0.646 | 0.653 | 0.639 | 0.720 | | ViT-B-16-laion2b_s34b_b88k | 0.662 | 0.673 | 0.652 | 0.743 | | ViT-B-16-SigLIP-webli | 0.688 | 0.690 | 0.685 | 0.751 | **Sub-Category-To-Product (Averaged across 4 datasets)** | Model | AvgP | P@1 | P@10 | MRR | |----------------------------|-----------|-----------|-----------|-----------| | FashionCLIP2.0 | 0.657 | 0.676 | 0.638 | 0.733 | | Marqo-FashionSigLIP | **0.725** | **0.767** | **0.683** | **0.811** | | OpenFashionCLIP | 0.598 | 0.619 | 0.578 | 0.689 | | ViT-B-16-laion2b_s34b_b88k | 0.638 | 0.651 | 0.624 | 0.712 | | ViT-B-16-SigLIP-webli | 0.643 | 0.643 | 0.643 | 0.726 |