Copy breton2 to breton
Browse files
README.md
CHANGED
@@ -21,9 +21,9 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Test WER
|
23 |
type: wer
|
24 |
-
value:
|
25 |
---
|
26 |
-
#
|
27 |
The model can be used directly (without a language model) as follows:
|
28 |
```python
|
29 |
import torch
|
@@ -34,8 +34,8 @@ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
34 |
lang = "br"
|
35 |
test_dataset = load_dataset("common_voice", lang, split="test[:2%]")
|
36 |
|
37 |
-
processor = Wav2Vec2Processor.from_pretrained("Marxav/wav2vec2-large-xlsr-53-
|
38 |
-
model = Wav2Vec2ForCTC.from_pretrained("Marxav/wav2vec2-large-xlsr-53-
|
39 |
|
40 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
41 |
|
@@ -66,16 +66,16 @@ print("Prediction:", processor.batch_decode(predicted_ids))
|
|
66 |
print("Reference:", test_dataset["sentence"][:nb_samples])
|
67 |
```
|
68 |
The above code leads to the following prediction for the first two samples:
|
69 |
-
* Prediction: ["
|
70 |
-
* Reference: ["N'haller ket dont a-benn eus netra pa vezer nec'het evel-se
|
71 |
|
72 |
The model can be evaluated as follows on the {language} test data of Common Voice.
|
73 |
```python
|
|
|
74 |
import torch
|
75 |
import torchaudio
|
76 |
from datasets import load_dataset, load_metric
|
77 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
78 |
-
import re
|
79 |
|
80 |
lang = 'br'
|
81 |
test_dataset = load_dataset("common_voice", lang, split="test")
|
@@ -120,4 +120,8 @@ def evaluate(batch):
|
|
120 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
121 |
|
122 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
123 |
-
```
|
|
|
|
|
|
|
|
|
|
21 |
metrics:
|
22 |
- name: Test WER
|
23 |
type: wer
|
24 |
+
value: 43.43
|
25 |
---
|
26 |
+
# wav2vec2-large-xlsr-53-breton2
|
27 |
The model can be used directly (without a language model) as follows:
|
28 |
```python
|
29 |
import torch
|
|
|
34 |
lang = "br"
|
35 |
test_dataset = load_dataset("common_voice", lang, split="test[:2%]")
|
36 |
|
37 |
+
processor = Wav2Vec2Processor.from_pretrained("Marxav/wav2vec2-large-xlsr-53-breton2")
|
38 |
+
model = Wav2Vec2ForCTC.from_pretrained("Marxav/wav2vec2-large-xlsr-53-breton2")
|
39 |
|
40 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
41 |
|
|
|
66 |
print("Reference:", test_dataset["sentence"][:nb_samples])
|
67 |
```
|
68 |
The above code leads to the following prediction for the first two samples:
|
69 |
+
* Prediction: ["neller ket dont a-benn eus netra la vez ser merc'hed evel sich", 'an eil hag egile']
|
70 |
+
* Reference: ["N'haller ket dont a-benn eus netra pa vezer nec'het evel-se.", 'An eil hag egile.']
|
71 |
|
72 |
The model can be evaluated as follows on the {language} test data of Common Voice.
|
73 |
```python
|
74 |
+
import re
|
75 |
import torch
|
76 |
import torchaudio
|
77 |
from datasets import load_dataset, load_metric
|
78 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
|
79 |
|
80 |
lang = 'br'
|
81 |
test_dataset = load_dataset("common_voice", lang, split="test")
|
|
|
120 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
121 |
|
122 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
123 |
+
```
|
124 |
+
|
125 |
+
**Test Result**: 43.43%
|
126 |
+
## Training
|
127 |
+
The Common Voice `train`, `validation` datasets were used for training.
|