Text Generation
Transformers
PyTorch
llama
text-generation-inference
Inference Endpoints
File size: 9,498 Bytes
80c6289
 
36f8016
 
 
 
 
 
 
 
 
 
 
 
 
9e07b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e59e9df
 
 
9e07b26
 
 
 
 
 
 
 
 
 
 
20d692d
9e07b26
 
 
 
 
 
 
 
 
 
 
 
 
0f79b55
 
 
 
 
9e07b26
 
 
 
0f79b55
 
 
 
9e07b26
 
 
 
0f79b55
 
 
 
9e07b26
 
 
 
 
 
0f79b55
 
 
 
 
9e07b26
 
 
 
0f79b55
 
 
 
9e07b26
 
 
 
0f79b55
 
 
 
9e07b26
 
0f79b55
9e07b26
 
 
 
0f79b55
 
9e07b26
0f79b55
 
9e07b26
0f79b55
 
9e07b26
 
36f8016
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
license: apache-2.0
datasets:
- Mathoctopus/GSM8KInstruct_Parallel
language:
- en
- es
- zh
- de
- ru
- th
- sw
- ja
- fr
- bn
---

### Introduction

We introduce πŸ™ MathOctopus, a series of open-source large language models (LLMs) specifically tailored for multilingual math problem-solving. The MathOctopus models are trained on πŸ€— MGSM8KInstruct Dataset, encompassing ten distinct languages.
MathOctopus notably outperforms conventional open-source LLMs and exhibits superiority over ChatGPT in few-shot scenarios.

### Datasets 

#### **MGSM8KInstruct**

| Training Dataset      | En      | Sw      | Zh      | Bn      | De      | Es      | Fr      | Ja      | Ru      | Th      | Overall |
|:----------------------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|
| MGSM8KInstruct        | 7473    | 7472    | 7466    | 6539    | 7466    | 7470    | 7469    | 7471    | 7361    | 7473    | **73.6K**   |


#### **MSVAMP**

| Test Dataset      | En      | Sw      | Zh      | Bn      | De      | Es      | Fr      | Ja      | Ru      | Th      | Overall |
|:----------------------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|
| MSVAMP                | 1000    | 1000    | 1000    | 1000    | 1000    | 1000    | 1000    | 1000    | 1000    | 1000    | **10K**   |

#### Usage

Our dataset and models are all available at Huggingface.

πŸ€— [MGSM8KInstruct_Parallel Dataset](https://huggingface.co/datasets/Mathoctopus/GSM8KInstruct_Parallel)

πŸ€— [MSVAMP Dataset](https://huggingface.co/datasets/Mathoctopus/MSVAMP)


Or you can directly download them from

##  Models

|  Base Model: LLama   	| Parallel-Training                                         	| Cross-Training                                                       	|
|----|---------------------------------------------------------------|---------------------------------------------------------------------------|
| 7B-LLaMA 2  	| πŸ™ [MathOctopus-Parallel-7B](https://huggingface.co/Mathoctopus/Parallel_7B)   	| πŸ™ [MathOctopus-Cross-7B](https://huggingface.co/Mathoctopus/Cross_7B)  	|
|| πŸ™[MathOctopus-Parallel-xRFT-7B](https://huggingface.co/Mathoctopus/Parallel_xRFT_7B)|πŸ™[MathOctopus-Cross-xRFT-7B](https://huggingface.co/Mathoctopus/Cross_xRFT_7B)|
| 13B-LLaMA 2 	| πŸ™ [MathOctopus-Parallel-13B] 	| πŸ™ [MathOctopus-Cross-13B]	|
|| πŸ™[MathOctopus-Parallel-xRFT-13B](https://huggingface.co/Mathoctopus/Parallel_xRFT_13B/tree/main)|πŸ™[MathOctopus-Cross-xRFT-13B]|
| 33B-LLaMA 1 	| πŸ™ [MathOctopus-Parallel-33B]    | πŸ™ [MathOctopus-Cross-33B] 	|
| 70B-LLaMA 2 	| Coming soon!	| Coming Soon!      |

*-Parallel refers to our model trained with the parallel-training strategy. 

*-Cross refers to our model trained with cross-training strategy. 

*-xRFT means we train the model with multilingual rejection sampling.

### **Overall Results on MGSM**

| 7B Model                        | En      | Sw      | Zh      | Bn      | De      | Es      | Fr      | Ja      | Ru      | Th      | Overall |
|:--------------------------------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|
| MathOctopus<sup>C</sup>         | 52.0    | 23.6    | 31.6    | 18.8    | 38.0    | 39.2    | 36.4    | 27.2    | 33.6    | 21.6    | 32.2    |
| **xRFT**-MathOctopus<sup>C</sup>| 51.2    | 24.0    | 33.2    | 18.8    | 36.0    | 41.2    | 37.6    | 29.6    | 36.4    | 25.2    | 33.3    |
| MathOctopus<sup>P</sup>-LoRA    | 30.4    | 15.2    | 23.6    | 10.4    | 22.8    | 24.8    | 26.4    | 18.0    | 22.0    | 14.8    | 20.8    |
| MathOctopus<sup>P</sup>         | 52.4    | 39.2    | 38.4    | 28.8    | 44.8    | 42.4    | 43.6    | 36.0    | 39.6    | 34.4    | 40.0    |
| **xRFT**-MathOctopus<sup>P</sup>| 54.8    | 38.4    | 45.2    | 33.2    | 43.6    | 45.2    | 38.0    | 35.6    | 48.4    | 36.4    | 41.9    |
<p></p >

| 13B Model                       | En      | Sw      | Zh      | Bn      | De      | Es      | Fr      | Ja      | Ru      | Th      | Overall |
|:--------------------------------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|
| MathOctopus<sup>C</sup>         | 56.4    | 27.2    | 39.2    | 24.0    | 47.6    | 49.6    | 47.6    | 40.4    | 42.0    | 24.8    | 39.9    |
| **xRFT**-MathOctopus<sup>C</sup>| 53.6    | 28.0    | 45.2    | 21.2    | 48.0    | 46.4    | 46.0    | 35.2    | 45.6    | 28.8    | 39.8    |
| MathOctopus<sup>P</sup>         | 53.2    | 42.8    | 48.8    | 35.2    | 44.4    | 48.0    | 48.4    | 43.2    | 47.6    | 46.8    | 45.8    |
| **xRFT**-MathOctopus<sup>P</sup>| 51.6    | 46.0    | 51.2    | 42.0    | 49.2    | 53.2    | 49.6    | 39.6    | 47.6    | 46.0    | 47.6    |
<p></p >

| 30-34B Model                    | En      | Sw      | Zh      | Bn      | De      | Es      | Fr      | Ja      | Ru      | Th      | Overall |
|:--------------------------------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|
| MathOctopus<sup>C</sup>         | 55.6    | 24.4    | 36.0    | 19.2    | 40.4    | 51.2    | 44.4    | 27.2    | 37.2    | 21.6    | 35.7    |
| **xRFT**-MathOctopus<sup>C</sup>| 53.6    | 27.6    | 34.4    | 19.2    | 47.2    | 47.6    | 44.8    | 30.8    | 38.8    | 22.8    | 36.7    |
| MathOctopus<sup>P</sup>         | 56.4    | 46.8    | 52.0    | 35.2    | 47.2    | 53.2    | 48.0    | 39.2    | 45.6    | 41.2    | 46.5    |
| **xRFT**-MathOctopus<sup>P</sup>| 51.6    | 47.2    | 52.4    | 37.6    | 51.2    | 52.8    | 44.4    | 41.6    | 50.0    | 47.6    | 47.6    |


### **Overall Results on MSVAMP**

| 7B Model                        | En      | Sw      | Zh      | Bn      | De      | Es      | Fr      | Ja      | Ru      | Th      | Overall |
|:--------------------------------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|
| MathOctopus<sup>C</sup>         | 49.2    | 36.6    | 43.6    | 30.2    | 48.6    | 46.8    | 46.4    | 42.5    | 46.7    | 34.0    | 42.5    |
| **xRFT**-MathOctopus<sup>C</sup>| 49.9    | 37.7    | 43.3    | 32.9    | 46.5    | 47.6    | 47.3    | 42.7    | 46.6    | 36.2    | 43.1    |
| MathOctopus<sup>P</sup>-LoRA    | 30.4    | 15.2    | 23.6    | 10.4    | 22.8    | 24.8    | 26.4    | 18.0    | 22.0    | 14.8    | 20.8    |
| MathOctopus<sup>P</sup>         | 46.5    | 40.1    | 42.5    | 29.1    | 43.5    | 45.4    | 46.0    | 42.5    | 45.4    | 35.7    | 41.7    |
| **xRFT**-MathOctopus<sup>P</sup>| 46.8    | 42.3    | 43.2    | 32.8    | 43.1    | 44.5    | 45.3    | 43.2    | 42.1    | 40.5    | 42.4    |
<p></p >

| 13B Model                       | En      | Sw      | Zh      | Bn      | De      | Es      | Fr      | Ja      | Ru      | Th      | Overall |
|:--------------------------------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|
| MathOctopus<sup>C</sup>         | 56.6    | 40.4    | 49.0    | 30.3    | 50.9    | 54.2    | 54.7    | 46.3    | 52.4    | 35.7    | 47.1    |
| **xRFT**-MathOctopus<sup>C</sup>| 52.9    | 41.9    | 49.2    | 34.1    | 50.5    | 52.8    | 51.5    | 45.8    | 50.2    | 35.7    | 46.5    |
| MathOctopus<sup>P</sup>         | 50.7    | 43.4    | 42.6    | 31.8    | 48.4    | 49.4    | 50.6    | 41.1    | 46.9    | 39.3    | 44.4    |
| **xRFT**-MathOctopus<sup>P</sup>| 44.6    | 43.4    | 46.4    | 34.2    | 47.7    | 48.2    | 49.9    | 43.1    | 48.2    | 39.5    | 44.5    |
<p></p >

| 30-34B Model                    | En      | Sw      | Zh      | Bn      | De      | Es      | Fr      | Ja      | Ru      | Th      | Overall |
|:--------------------------------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|:--------|
| MathOctopus<sup>C</sup>         | 51.5    | 42.1    | 46.2    | 23.2    | 50.5    | 52.1    | 52.9    | 42.2    | 50.5    | 33.4    | 44.5    |
| **xRFT**-MathOctopus<sup>C</sup>| 48.1    | 42.8    | 43.6    | 23.3    | 48.7    | 50.0    | 48.9    | 43.4    | 44.6    | 35.5    | 42.9    |
| MathOctopus<sup>P</sup>         | 56.4    | 46.8    | 52.0    | 35.2    | 47.2    | 53.2    | 48.0    | 39.2    | 45.6    | 41.2    | 46.5    |
| **xRFT**-MathOctopus<sup>P</sup>| 48.0    | 42.3    | 46.1    | 36.2    | 47.5    | 48.5    | 48.3    | 45.8    | 47.2    | 41.2    | 45.1    |


### **MathOctopus in English**

| Models                          | GSM8K   | SVAMP   |
|:--------------------------------|:--------|:--------|
| LLaMA 2-7B                      | 42.4    | 38.3    |
| MathOctopus<sup>P</sup>-7B      | 49.3    | 46.8    |
| MathOctopus<sup>C</sup>-7B      | 50.8    | 49.3    |
| LLaMA 2-13B                     | 51.0    | 50.9    |
| MathOctopus<sup>P</sup>-13B     | 55.5    | 52.1    |
| MathOctopus<sup>C</sup>-13B     | 56.6    | 56.6    |
| LLaMA 1-33B                     | 50.0    | 49.0    |
| MathOctopus<sup>P</sup>-33B     | 56.0    | 52.5    |
| MathOctopus<sup>C</sup>-33B     | 53.7    | 51.5    |

## Intended Uses
These models are trained for research purposes. They are designed to solve multilingual math problems. They can be used in educational software, tutoring systems, or any application where a solution to a math problem is needed.