--- license: mit base_model: microsoft/layoutlm-base-uncased tags: - generated_from_keras_callback model-index: - name: Matt6450/layoutlm-funsd-tf results: [] --- # Matt6450/layoutlm-funsd-tf This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0288 - Validation Loss: 0.9539 - Train Overall Precision: 0.7396 - Train Overall Recall: 0.7993 - Train Overall F1: 0.7683 - Train Overall Accuracy: 0.8033 - Epoch: 30 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': 1.9999999494757503e-05, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch | |:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:| | 1.8669 | 1.6316 | 0.0652 | 0.0502 | 0.0567 | 0.3485 | 0 | | 1.4744 | 1.2571 | 0.3367 | 0.3713 | 0.3531 | 0.5765 | 1 | | 1.0656 | 0.8828 | 0.5626 | 0.6558 | 0.6057 | 0.7195 | 2 | | 0.7471 | 0.7163 | 0.6412 | 0.7316 | 0.6834 | 0.7796 | 3 | | 0.5953 | 0.6687 | 0.6734 | 0.7551 | 0.7119 | 0.7859 | 4 | | 0.4769 | 0.6592 | 0.6901 | 0.7777 | 0.7313 | 0.7923 | 5 | | 0.4094 | 0.6528 | 0.6892 | 0.7943 | 0.7380 | 0.7966 | 6 | | 0.3595 | 0.6589 | 0.6849 | 0.7863 | 0.7321 | 0.7947 | 7 | | 0.3063 | 0.6460 | 0.7165 | 0.7978 | 0.7550 | 0.8083 | 8 | | 0.2523 | 0.6828 | 0.7134 | 0.7968 | 0.7528 | 0.8039 | 9 | | 0.2228 | 0.6844 | 0.7355 | 0.8008 | 0.7668 | 0.8150 | 10 | | 0.1918 | 0.7142 | 0.7298 | 0.8023 | 0.7643 | 0.8020 | 11 | | 0.1679 | 0.7069 | 0.7477 | 0.7998 | 0.7728 | 0.8138 | 12 | | 0.1482 | 0.7370 | 0.7421 | 0.7983 | 0.7692 | 0.8096 | 13 | | 0.1209 | 0.7565 | 0.7427 | 0.8138 | 0.7766 | 0.8095 | 14 | | 0.1133 | 0.7794 | 0.7466 | 0.8144 | 0.7790 | 0.8080 | 15 | | 0.0981 | 0.7905 | 0.7461 | 0.8078 | 0.7757 | 0.8083 | 16 | | 0.0912 | 0.8182 | 0.7388 | 0.8073 | 0.7715 | 0.8096 | 17 | | 0.0812 | 0.7953 | 0.7566 | 0.8048 | 0.7800 | 0.8164 | 18 | | 0.0723 | 0.8192 | 0.7604 | 0.8043 | 0.7818 | 0.8122 | 19 | | 0.0657 | 0.8495 | 0.7491 | 0.8179 | 0.7820 | 0.8068 | 20 | | 0.0660 | 0.8259 | 0.7536 | 0.7963 | 0.7743 | 0.8139 | 21 | | 0.0553 | 0.8820 | 0.7443 | 0.7903 | 0.7666 | 0.8007 | 22 | | 0.0575 | 0.8470 | 0.7510 | 0.8098 | 0.7793 | 0.8102 | 23 | | 0.0445 | 0.8824 | 0.7395 | 0.7878 | 0.7629 | 0.8066 | 24 | | 0.0421 | 0.8925 | 0.7546 | 0.7993 | 0.7763 | 0.8117 | 25 | | 0.0387 | 0.9253 | 0.7537 | 0.7968 | 0.7746 | 0.8033 | 26 | | 0.0399 | 0.9226 | 0.7422 | 0.8018 | 0.7709 | 0.8026 | 27 | | 0.0396 | 0.9753 | 0.75 | 0.8023 | 0.7753 | 0.7968 | 28 | | 0.0327 | 0.9237 | 0.7462 | 0.8038 | 0.7739 | 0.8076 | 29 | | 0.0288 | 0.9539 | 0.7396 | 0.7993 | 0.7683 | 0.8033 | 30 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.1