{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faddffca9e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faddffcaa70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faddffcab00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faddffcab90>", "_build": "<function ActorCriticPolicy._build at 0x7faddffcac20>", "forward": "<function ActorCriticPolicy.forward at 0x7faddffcacb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7faddffcad40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faddffcadd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7faddffcae60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faddffcaef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faddffcaf80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faddffcb010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7faddffc3240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682620674261997385, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAC+r97wjnFa+KT/Su7Jjmj5f13a9TIhnvjhNAT3PENY+p8sJPdpl3r4DqGm8EWoMP0ic9b04kgS9Y3GOPFP+BD3+vBK+al5nvh1P4jsbGYU+9T2EvWeEC72jFzq8zBuBu+nhnjv6iik+IChuva4KPL5Fvja6L6A4vjX3jry1QNI9ua0SvmloL75RLWk87oGXPm+Lpr2DmpM8ZI4WuvIj7D3bJlK94zCwPmr3tLzHtAm/JW2EvaL8vz47miu8c+fsvp0ru70vcxA9wAbIPK/WBr5iNLC9r2tHvjcfzzwHUmc+2dh4vUOyMj7Lpny6Ydwkvmmjkr3jiNW+URiPvD5iCj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAiONLbpNbknV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIjjgGMXJo11fZQoaAZHQH9AAAAAAABoB030AWgIR0CI5Aq5sj3VdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiORlt0mtyXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIjkzAUL2Ht1fZQoaAZHQH9AAAAAAABoB030AWgIR0CI5U/5ckdFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiOXw40dilXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIjl5s/IKdB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CI5l7k4m1IdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiOcnwgDA8HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIjnuGmDUVl1fZQoaAZHQH9AAAAAAABoB030AWgIR0CI6EZNwiqydX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiOhcM/hVEXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIjoeyTpxFR1fZQoaAZHQH9AAAAAAABoB030AWgIR0CI6NBVMmF8dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiOkWOQyRCHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIjpQkVvddp1fZQoaAZHQH9AAAAAAABoB030AWgIR0CI6Xhm5DqodX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiOoEvTPSlXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIjqYCQtBfN1fZQoaAZHQH9AAAAAAABoB030AWgIR0CI6sUQCjk/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiOtPXK8tgHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIjr+iL2pQ11fZQoaAZHQH9AAAAAAABoB030AWgIR0CI6/AIIF/ydX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiOxi0v4/NnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIjtJ0W/JvJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CI7bFG5MDfdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiO47BO58SnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIjuUqDsdDJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CI7nOX3QD3dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiO7P7WNFSnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIjvFo8IRiB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CI70CNjslcdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiO90rsjVx3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIjv/CQ9zOp1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJqrqqwQlKdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiataL4vexnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQImsJDLKV6h1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJrSLQ5WBCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAia0a06YE4nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQImtvBciW3V1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJrpIHTqjadX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAia8eocaOxXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQImvsVvddmh1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJr8dfb9IgdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAia/lXiiqQ3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQImwOQ4jrzJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJsH0NjLB9dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAibCnjQzDXXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQImw7Q/oq1B1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJsX3Qla8pdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAibHZooNNJ3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQImyRHy3CsR1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJssjHGS6ldX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAibNuBtk4FXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQImzZAB1cMV1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJs9s/IKc/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAibSi4SYgJXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIm1MUM5OrR1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJtbmdRR/FdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAibXOJDVpbnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIm17BZZB9l1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJtj7IkqtpdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAibaL3Cbc5HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIm2uIRAbAF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJtvGFzuF6dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAibeC6pYLcHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIm34FLWZqp1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJuE6wt8NQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAibjmXXyy2XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIm5qfcvduZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJuaCPp6hQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAiboir1dxAHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIm6+dRR/Ex1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJu4qjJuEVdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAibwUEHMUy3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIm8KUFB6a91fZQoaAZHQH9AAAAAAABoB030AWgIR0CJvEeBg/kedX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAibyZcLSeAnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIm83KGL1mJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJvQYGdI5HdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAib06uOjqOnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIm9w75mAb11fZQoaAZHQH9AAAAAAABoB030AWgIR0CJvh18LKFJdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAib6NNrTH83V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIm/F4A0bcZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJv7/FzdULdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAib+1+I/JNnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQInAMPWhAW11fZQoaAZHQH9AAAAAAABoB030AWgIR0CJwQh6By0bdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAicGmyPdVN3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQInCO9vjwQV1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJwlHbypaSdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAicJwv6CUYHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQInCx1q33Ht1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJww5ZKWcCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAicM6nrIHT3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQInDcXLvCuV1fZQoaAZHQH9AAAAAAABoB030AWgIR0CJw/kMCtA+dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAicRSTQmeDnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAACamZnA//9//1B31r7//3//lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 2, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}} |