File size: 1,810 Bytes
3e12ef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

---
license: cc-by-nc-4.0
tags:
- mms
- vits
pipeline_tag: text-to-speech
---

# Massively Multilingual Speech (MMS) : Text-to-Speech Models

This repository contains the **Ayta, Abellen (abp)** language text-to-speech (TTS) model checkpoint.

This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to
provide speech technology across a diverse range of languages. You can find more details about the supported languages
and their ISO 639-3 codes in the [MMS Language Coverage
Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html).

## Usage

Using this checkpoint from Hugging Face Transformers:

```python
from transformers import VitsModel, VitsMmsTokenizer
import torch

model = VitsModel.from_pretrained("Matthijs/mms-tts-abp")
tokenizer = VitsMmsTokenizer.from_pretrained("Matthijs/mms-tts-abp")

text = "some example text in the Ayta, Abellen language"
inputs = tokenizer(text, return_tensors="pt")

with torch.no_grad():
    output = model(**inputs)

from IPython.display import Audio
Audio(output.audio[0], rate=16000)
```

Note: For certain checkpoints, the input text must be converted to the Latin alphabet first using the
[uroman](https://github.com/isi-nlp/uroman) tool.

## Model credits

This model was developed by Vineel Pratap et al. and is licensed as **CC-BY-NC 4.0**

    @article{pratap2023mms,
        title={Scaling Speech Technology to 1,000+ Languages},
        author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli},
        journal={arXiv},
        year={2023}
    }