Mavkif commited on
Commit
ed6cbe0
·
verified ·
1 Parent(s): 2f43805

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -36
README.md CHANGED
@@ -50,7 +50,41 @@ Although this model performs well and is state-of-the-art for now. But still thi
50
 
51
  ## How to Get Started with the Model
52
 
53
- Use the code below to get started with the model.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
 
56
 
@@ -68,7 +102,6 @@ MRR @10 : 0.247
68
 
69
 
70
  ### Results
71
- ## Detailed Results
72
 
73
  | Model | Name | Data | Recall@10 | MRR@10 | Queries Ranked |
74
  |---------------------------------------|---------------------------------------|--------------|-----------|--------|----------------|
@@ -79,46 +112,22 @@ MRR @10 : 0.247
79
  | This work | Mavkif/urdu-mt5-mmarco | Urdu data | 0.438 | 0.247 | 6980 |
80
 
81
 
82
- #### Summary
83
 
84
 
85
 
86
  ### Model Architecture and Objective
87
- From config.json :
88
-
89
  {
90
- "_name_or_path": "unicamp-dl/mt5-base-mmarco-v2",
91
- "architectures": [
92
- "MT5ForConditionalGeneration"
93
- ],
94
- "classifier_dropout": 0.0,
95
- "d_ff": 2048,
96
- "d_kv": 64,
97
- "d_model": 768,
98
- "decoder_start_token_id": 0,
99
- "dense_act_fn": "gelu_new",
100
- "dropout_rate": 0.1,
101
- "eos_token_id": 1,
102
- "feed_forward_proj": "gated-gelu",
103
- "initializer_factor": 1.0,
104
- "is_encoder_decoder": true,
105
- "is_gated_act": true,
106
- "layer_norm_epsilon": 1e-06,
107
- "model_type": "mt5",
108
- "num_decoder_layers": 12,
109
- "num_heads": 12,
110
- "num_layers": 12,
111
- "output_past": true,
112
- "pad_token_id": 0,
113
- "relative_attention_max_distance": 128,
114
- "relative_attention_num_buckets": 32,
115
- "tie_word_embeddings": false,
116
- "tokenizer_class": "T5Tokenizer",
117
- "torch_dtype": "float32",
118
- "transformers_version": "4.38.2",
119
- "use_cache": true,
120
- "vocab_size": 250112
121
  }
 
122
 
123
 
124
  ## Model Card Authors [optional]
 
50
 
51
  ## How to Get Started with the Model
52
 
53
+ Example Code for Scoring Query-Document Pairs:
54
+ In an IR setting, you provide a query and one or more candidate documents. The model scores each document for relevance to the query, which can be used for ranking.
55
+ ```
56
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
57
+ import torch
58
+
59
+ # Load the tokenizer and model
60
+ tokenizer = AutoTokenizer.from_pretrained("Mavkif/urdu-mt5-mmarco")
61
+ model = AutoModelForSeq2SeqLM.from_pretrained("Mavkif/urdu-mt5-mmarco")
62
+
63
+ # Define the query and candidate documents
64
+ query = "پاکستان کی معیشت کی موجودہ صورتحال کیا ہے؟"
65
+ document_1 = "پاکستان کی معیشت میں حالیہ ترقی کے بارے میں معلومات۔"
66
+ document_2 = "فٹبال پاکستان میں تیزی سے مقبول ہو رہا ہے۔"
67
+
68
+ # Tokenize query-document pairs and calculate relevance scores
69
+ def get_score(query, document):
70
+ input_text = f"Query: {query} Document: {document}"
71
+ inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
72
+
73
+ # Pass through the model and get the relevance score (logits)
74
+ outputs = model(**inputs)
75
+ score = outputs.logits[0, -1, :] # last token logits
76
+ return torch.softmax(score, dim=0)[tokenizer.eos_token_id].item()
77
+
78
+ # Get scores for each document
79
+ score_1 = get_score(query, document_1)
80
+ score_2 = get_score(query, document_2)
81
+
82
+ print(f"Relevance Score for Document 1: {score_1}")
83
+ print(f"Relevance Score for Document 2: {score_2}")
84
+
85
+ # Higher score indicates higher relevance
86
+
87
+ ```
88
 
89
 
90
 
 
102
 
103
 
104
  ### Results
 
105
 
106
  | Model | Name | Data | Recall@10 | MRR@10 | Queries Ranked |
107
  |---------------------------------------|---------------------------------------|--------------|-----------|--------|----------------|
 
112
  | This work | Mavkif/urdu-mt5-mmarco | Urdu data | 0.438 | 0.247 | 6980 |
113
 
114
 
 
115
 
116
 
117
 
118
  ### Model Architecture and Objective
 
 
119
  {
120
+ "_name_or_path": "unicamp-dl/mt5-base-mmarco-v2",
121
+ "architectures": ["MT5ForConditionalGeneration"],
122
+ "d_model": 768,
123
+ "num_heads": 12,
124
+ "num_layers": 12,
125
+ "dropout_rate": 0.1,
126
+ "vocab_size": 250112,
127
+ "model_type": "mt5",
128
+ "transformers_version": "4.38.2"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
  }
130
+ For more details on how to customize the decoding parameters (such as max_length, num_beams, and early_stopping), refer to the Hugging Face documentation.
131
 
132
 
133
  ## Model Card Authors [optional]