vaibhavad commited on
Commit
692c706
1 Parent(s): e0359e8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2495 -0
README.md CHANGED
@@ -23,6 +23,2501 @@ tags:
23
  - fever
24
  - hotpot_qa
25
  - mteb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  ---
27
 
28
  # LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
 
23
  - fever
24
  - hotpot_qa
25
  - mteb
26
+ model-index:
27
+ - name: LLM2Vec-Mistral-7B-unsupervised
28
+ results:
29
+ - task:
30
+ type: Classification
31
+ dataset:
32
+ type: mteb/amazon_counterfactual
33
+ name: MTEB AmazonCounterfactualClassification (en)
34
+ config: en
35
+ split: test
36
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
37
+ metrics:
38
+ - type: accuracy
39
+ value: 76.94029850746269
40
+ - type: ap
41
+ value: 41.01055096636703
42
+ - type: f1
43
+ value: 71.2582580801963
44
+ - task:
45
+ type: Classification
46
+ dataset:
47
+ type: mteb/amazon_polarity
48
+ name: MTEB AmazonPolarityClassification
49
+ config: default
50
+ split: test
51
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
52
+ metrics:
53
+ - type: accuracy
54
+ value: 85.288275
55
+ - type: ap
56
+ value: 80.9174293931393
57
+ - type: f1
58
+ value: 85.26284279319103
59
+ - task:
60
+ type: Classification
61
+ dataset:
62
+ type: mteb/amazon_reviews_multi
63
+ name: MTEB AmazonReviewsClassification (en)
64
+ config: en
65
+ split: test
66
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
67
+ metrics:
68
+ - type: accuracy
69
+ value: 47.089999999999996
70
+ - type: f1
71
+ value: 46.42571856588491
72
+ - task:
73
+ type: Retrieval
74
+ dataset:
75
+ type: arguana
76
+ name: MTEB ArguAna
77
+ config: default
78
+ split: test
79
+ revision: None
80
+ metrics:
81
+ - type: map_at_1
82
+ value: 25.676
83
+ - type: map_at_10
84
+ value: 41.705999999999996
85
+ - type: map_at_100
86
+ value: 42.649
87
+ - type: map_at_1000
88
+ value: 42.655
89
+ - type: map_at_3
90
+ value: 36.214
91
+ - type: map_at_5
92
+ value: 39.475
93
+ - type: mrr_at_1
94
+ value: 26.173999999999996
95
+ - type: mrr_at_10
96
+ value: 41.873
97
+ - type: mrr_at_100
98
+ value: 42.817
99
+ - type: mrr_at_1000
100
+ value: 42.823
101
+ - type: mrr_at_3
102
+ value: 36.427
103
+ - type: mrr_at_5
104
+ value: 39.646
105
+ - type: ndcg_at_1
106
+ value: 25.676
107
+ - type: ndcg_at_10
108
+ value: 51.001
109
+ - type: ndcg_at_100
110
+ value: 55.001
111
+ - type: ndcg_at_1000
112
+ value: 55.167
113
+ - type: ndcg_at_3
114
+ value: 39.713
115
+ - type: ndcg_at_5
116
+ value: 45.596
117
+ - type: precision_at_1
118
+ value: 25.676
119
+ - type: precision_at_10
120
+ value: 8.087
121
+ - type: precision_at_100
122
+ value: 0.983
123
+ - type: precision_at_1000
124
+ value: 0.1
125
+ - type: precision_at_3
126
+ value: 16.619
127
+ - type: precision_at_5
128
+ value: 12.831000000000001
129
+ - type: recall_at_1
130
+ value: 25.676
131
+ - type: recall_at_10
132
+ value: 80.868
133
+ - type: recall_at_100
134
+ value: 98.29299999999999
135
+ - type: recall_at_1000
136
+ value: 99.57300000000001
137
+ - type: recall_at_3
138
+ value: 49.858000000000004
139
+ - type: recall_at_5
140
+ value: 64.154
141
+ - task:
142
+ type: Clustering
143
+ dataset:
144
+ type: mteb/arxiv-clustering-p2p
145
+ name: MTEB ArxivClusteringP2P
146
+ config: default
147
+ split: test
148
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
149
+ metrics:
150
+ - type: v_measure
151
+ value: 47.557333278165295
152
+ - task:
153
+ type: Clustering
154
+ dataset:
155
+ type: mteb/arxiv-clustering-s2s
156
+ name: MTEB ArxivClusteringS2S
157
+ config: default
158
+ split: test
159
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
160
+ metrics:
161
+ - type: v_measure
162
+ value: 39.921940994207674
163
+ - task:
164
+ type: Reranking
165
+ dataset:
166
+ type: mteb/askubuntudupquestions-reranking
167
+ name: MTEB AskUbuntuDupQuestions
168
+ config: default
169
+ split: test
170
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
171
+ metrics:
172
+ - type: map
173
+ value: 58.602773795071585
174
+ - type: mrr
175
+ value: 72.93749725190169
176
+ - task:
177
+ type: STS
178
+ dataset:
179
+ type: mteb/biosses-sts
180
+ name: MTEB BIOSSES
181
+ config: default
182
+ split: test
183
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
184
+ metrics:
185
+ - type: cos_sim_spearman
186
+ value: 83.29045204631967
187
+ - task:
188
+ type: Classification
189
+ dataset:
190
+ type: mteb/banking77
191
+ name: MTEB Banking77Classification
192
+ config: default
193
+ split: test
194
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
195
+ metrics:
196
+ - type: accuracy
197
+ value: 86.1590909090909
198
+ - type: f1
199
+ value: 86.08993054539444
200
+ - task:
201
+ type: Clustering
202
+ dataset:
203
+ type: mteb/biorxiv-clustering-p2p
204
+ name: MTEB BiorxivClusteringP2P
205
+ config: default
206
+ split: test
207
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
208
+ metrics:
209
+ - type: v_measure
210
+ value: 36.13784714320738
211
+ - task:
212
+ type: Clustering
213
+ dataset:
214
+ type: mteb/biorxiv-clustering-s2s
215
+ name: MTEB BiorxivClusteringS2S
216
+ config: default
217
+ split: test
218
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
219
+ metrics:
220
+ - type: v_measure
221
+ value: 30.26284987791574
222
+ - task:
223
+ type: Retrieval
224
+ dataset:
225
+ type: cqadupstack/android
226
+ name: MTEB CQADupstackAndroidRetrieval
227
+ config: default
228
+ split: test
229
+ revision: None
230
+ metrics:
231
+ - type: map_at_1
232
+ value: 27.611
233
+ - type: map_at_10
234
+ value: 37.838
235
+ - type: map_at_100
236
+ value: 39.446999999999996
237
+ - type: map_at_1000
238
+ value: 39.583
239
+ - type: map_at_3
240
+ value: 34.563
241
+ - type: map_at_5
242
+ value: 36.332
243
+ - type: mrr_at_1
244
+ value: 35.765
245
+ - type: mrr_at_10
246
+ value: 44.614
247
+ - type: mrr_at_100
248
+ value: 45.501000000000005
249
+ - type: mrr_at_1000
250
+ value: 45.558
251
+ - type: mrr_at_3
252
+ value: 42.513
253
+ - type: mrr_at_5
254
+ value: 43.515
255
+ - type: ndcg_at_1
256
+ value: 35.765
257
+ - type: ndcg_at_10
258
+ value: 44.104
259
+ - type: ndcg_at_100
260
+ value: 50.05500000000001
261
+ - type: ndcg_at_1000
262
+ value: 52.190000000000005
263
+ - type: ndcg_at_3
264
+ value: 39.834
265
+ - type: ndcg_at_5
266
+ value: 41.491
267
+ - type: precision_at_1
268
+ value: 35.765
269
+ - type: precision_at_10
270
+ value: 8.870000000000001
271
+ - type: precision_at_100
272
+ value: 1.505
273
+ - type: precision_at_1000
274
+ value: 0.2
275
+ - type: precision_at_3
276
+ value: 19.886
277
+ - type: precision_at_5
278
+ value: 14.277999999999999
279
+ - type: recall_at_1
280
+ value: 27.611
281
+ - type: recall_at_10
282
+ value: 55.065
283
+ - type: recall_at_100
284
+ value: 80.60199999999999
285
+ - type: recall_at_1000
286
+ value: 94.517
287
+ - type: recall_at_3
288
+ value: 41.281
289
+ - type: recall_at_5
290
+ value: 46.791
291
+ - task:
292
+ type: Retrieval
293
+ dataset:
294
+ type: cqadupstack/english
295
+ name: MTEB CQADupstackEnglishRetrieval
296
+ config: default
297
+ split: test
298
+ revision: None
299
+ metrics:
300
+ - type: map_at_1
301
+ value: 28.599999999999998
302
+ - type: map_at_10
303
+ value: 38.218999999999994
304
+ - type: map_at_100
305
+ value: 39.336
306
+ - type: map_at_1000
307
+ value: 39.464
308
+ - type: map_at_3
309
+ value: 35.599
310
+ - type: map_at_5
311
+ value: 36.927
312
+ - type: mrr_at_1
313
+ value: 37.197
314
+ - type: mrr_at_10
315
+ value: 44.759
316
+ - type: mrr_at_100
317
+ value: 45.372
318
+ - type: mrr_at_1000
319
+ value: 45.422000000000004
320
+ - type: mrr_at_3
321
+ value: 42.941
322
+ - type: mrr_at_5
323
+ value: 43.906
324
+ - type: ndcg_at_1
325
+ value: 37.197
326
+ - type: ndcg_at_10
327
+ value: 43.689
328
+ - type: ndcg_at_100
329
+ value: 47.588
330
+ - type: ndcg_at_1000
331
+ value: 49.868
332
+ - type: ndcg_at_3
333
+ value: 40.434
334
+ - type: ndcg_at_5
335
+ value: 41.617
336
+ - type: precision_at_1
337
+ value: 37.197
338
+ - type: precision_at_10
339
+ value: 8.529
340
+ - type: precision_at_100
341
+ value: 1.325
342
+ - type: precision_at_1000
343
+ value: 0.181
344
+ - type: precision_at_3
345
+ value: 20.212
346
+ - type: precision_at_5
347
+ value: 13.987
348
+ - type: recall_at_1
349
+ value: 28.599999999999998
350
+ - type: recall_at_10
351
+ value: 52.266999999999996
352
+ - type: recall_at_100
353
+ value: 69.304
354
+ - type: recall_at_1000
355
+ value: 84.249
356
+ - type: recall_at_3
357
+ value: 41.281
358
+ - type: recall_at_5
359
+ value: 45.56
360
+ - task:
361
+ type: Retrieval
362
+ dataset:
363
+ type: cqadupstack/gaming
364
+ name: MTEB CQADupstackGamingRetrieval
365
+ config: default
366
+ split: test
367
+ revision: None
368
+ metrics:
369
+ - type: map_at_1
370
+ value: 33.168
371
+ - type: map_at_10
372
+ value: 44.690999999999995
373
+ - type: map_at_100
374
+ value: 45.804
375
+ - type: map_at_1000
376
+ value: 45.876
377
+ - type: map_at_3
378
+ value: 41.385
379
+ - type: map_at_5
380
+ value: 43.375
381
+ - type: mrr_at_1
382
+ value: 38.997
383
+ - type: mrr_at_10
384
+ value: 48.782
385
+ - type: mrr_at_100
386
+ value: 49.534
387
+ - type: mrr_at_1000
388
+ value: 49.57
389
+ - type: mrr_at_3
390
+ value: 46.134
391
+ - type: mrr_at_5
392
+ value: 47.814
393
+ - type: ndcg_at_1
394
+ value: 38.997
395
+ - type: ndcg_at_10
396
+ value: 50.707
397
+ - type: ndcg_at_100
398
+ value: 55.358
399
+ - type: ndcg_at_1000
400
+ value: 56.818999999999996
401
+ - type: ndcg_at_3
402
+ value: 45.098
403
+ - type: ndcg_at_5
404
+ value: 48.065999999999995
405
+ - type: precision_at_1
406
+ value: 38.997
407
+ - type: precision_at_10
408
+ value: 8.414000000000001
409
+ - type: precision_at_100
410
+ value: 1.159
411
+ - type: precision_at_1000
412
+ value: 0.135
413
+ - type: precision_at_3
414
+ value: 20.564
415
+ - type: precision_at_5
416
+ value: 14.445
417
+ - type: recall_at_1
418
+ value: 33.168
419
+ - type: recall_at_10
420
+ value: 64.595
421
+ - type: recall_at_100
422
+ value: 85.167
423
+ - type: recall_at_1000
424
+ value: 95.485
425
+ - type: recall_at_3
426
+ value: 49.555
427
+ - type: recall_at_5
428
+ value: 56.871
429
+ - task:
430
+ type: Retrieval
431
+ dataset:
432
+ type: cqadupstack/gis
433
+ name: MTEB CQADupstackGisRetrieval
434
+ config: default
435
+ split: test
436
+ revision: None
437
+ metrics:
438
+ - type: map_at_1
439
+ value: 17.254
440
+ - type: map_at_10
441
+ value: 23.925
442
+ - type: map_at_100
443
+ value: 25.008000000000003
444
+ - type: map_at_1000
445
+ value: 25.123
446
+ - type: map_at_3
447
+ value: 21.676000000000002
448
+ - type: map_at_5
449
+ value: 23.042
450
+ - type: mrr_at_1
451
+ value: 18.756999999999998
452
+ - type: mrr_at_10
453
+ value: 25.578
454
+ - type: mrr_at_100
455
+ value: 26.594
456
+ - type: mrr_at_1000
457
+ value: 26.680999999999997
458
+ - type: mrr_at_3
459
+ value: 23.371
460
+ - type: mrr_at_5
461
+ value: 24.721
462
+ - type: ndcg_at_1
463
+ value: 18.756999999999998
464
+ - type: ndcg_at_10
465
+ value: 27.878999999999998
466
+ - type: ndcg_at_100
467
+ value: 33.285
468
+ - type: ndcg_at_1000
469
+ value: 36.333
470
+ - type: ndcg_at_3
471
+ value: 23.461000000000002
472
+ - type: ndcg_at_5
473
+ value: 25.836
474
+ - type: precision_at_1
475
+ value: 18.756999999999998
476
+ - type: precision_at_10
477
+ value: 4.429
478
+ - type: precision_at_100
479
+ value: 0.754
480
+ - type: precision_at_1000
481
+ value: 0.106
482
+ - type: precision_at_3
483
+ value: 9.981
484
+ - type: precision_at_5
485
+ value: 7.412000000000001
486
+ - type: recall_at_1
487
+ value: 17.254
488
+ - type: recall_at_10
489
+ value: 38.42
490
+ - type: recall_at_100
491
+ value: 63.50900000000001
492
+ - type: recall_at_1000
493
+ value: 86.787
494
+ - type: recall_at_3
495
+ value: 26.840999999999998
496
+ - type: recall_at_5
497
+ value: 32.4
498
+ - task:
499
+ type: Retrieval
500
+ dataset:
501
+ type: cqadupstack/mathematica
502
+ name: MTEB CQADupstackMathematicaRetrieval
503
+ config: default
504
+ split: test
505
+ revision: None
506
+ metrics:
507
+ - type: map_at_1
508
+ value: 10.495000000000001
509
+ - type: map_at_10
510
+ value: 16.505
511
+ - type: map_at_100
512
+ value: 17.59
513
+ - type: map_at_1000
514
+ value: 17.709
515
+ - type: map_at_3
516
+ value: 13.974
517
+ - type: map_at_5
518
+ value: 15.466
519
+ - type: mrr_at_1
520
+ value: 14.179
521
+ - type: mrr_at_10
522
+ value: 20.396
523
+ - type: mrr_at_100
524
+ value: 21.384
525
+ - type: mrr_at_1000
526
+ value: 21.47
527
+ - type: mrr_at_3
528
+ value: 17.828
529
+ - type: mrr_at_5
530
+ value: 19.387999999999998
531
+ - type: ndcg_at_1
532
+ value: 14.179
533
+ - type: ndcg_at_10
534
+ value: 20.852
535
+ - type: ndcg_at_100
536
+ value: 26.44
537
+ - type: ndcg_at_1000
538
+ value: 29.448999999999998
539
+ - type: ndcg_at_3
540
+ value: 16.181
541
+ - type: ndcg_at_5
542
+ value: 18.594
543
+ - type: precision_at_1
544
+ value: 14.179
545
+ - type: precision_at_10
546
+ value: 4.229
547
+ - type: precision_at_100
548
+ value: 0.8170000000000001
549
+ - type: precision_at_1000
550
+ value: 0.12
551
+ - type: precision_at_3
552
+ value: 8.126
553
+ - type: precision_at_5
554
+ value: 6.493
555
+ - type: recall_at_1
556
+ value: 10.495000000000001
557
+ - type: recall_at_10
558
+ value: 30.531000000000002
559
+ - type: recall_at_100
560
+ value: 55.535999999999994
561
+ - type: recall_at_1000
562
+ value: 77.095
563
+ - type: recall_at_3
564
+ value: 17.805
565
+ - type: recall_at_5
566
+ value: 24.041
567
+ - task:
568
+ type: Retrieval
569
+ dataset:
570
+ type: cqadupstack/physics
571
+ name: MTEB CQADupstackPhysicsRetrieval
572
+ config: default
573
+ split: test
574
+ revision: None
575
+ metrics:
576
+ - type: map_at_1
577
+ value: 24.826999999999998
578
+ - type: map_at_10
579
+ value: 34.957
580
+ - type: map_at_100
581
+ value: 36.314
582
+ - type: map_at_1000
583
+ value: 36.437999999999995
584
+ - type: map_at_3
585
+ value: 31.328
586
+ - type: map_at_5
587
+ value: 33.254
588
+ - type: mrr_at_1
589
+ value: 31.375999999999998
590
+ - type: mrr_at_10
591
+ value: 40.493
592
+ - type: mrr_at_100
593
+ value: 41.410000000000004
594
+ - type: mrr_at_1000
595
+ value: 41.46
596
+ - type: mrr_at_3
597
+ value: 37.504
598
+ - type: mrr_at_5
599
+ value: 39.212
600
+ - type: ndcg_at_1
601
+ value: 31.375999999999998
602
+ - type: ndcg_at_10
603
+ value: 41.285
604
+ - type: ndcg_at_100
605
+ value: 46.996
606
+ - type: ndcg_at_1000
607
+ value: 49.207
608
+ - type: ndcg_at_3
609
+ value: 35.297
610
+ - type: ndcg_at_5
611
+ value: 37.999
612
+ - type: precision_at_1
613
+ value: 31.375999999999998
614
+ - type: precision_at_10
615
+ value: 7.960000000000001
616
+ - type: precision_at_100
617
+ value: 1.277
618
+ - type: precision_at_1000
619
+ value: 0.165
620
+ - type: precision_at_3
621
+ value: 17.132
622
+ - type: precision_at_5
623
+ value: 12.57
624
+ - type: recall_at_1
625
+ value: 24.826999999999998
626
+ - type: recall_at_10
627
+ value: 54.678000000000004
628
+ - type: recall_at_100
629
+ value: 78.849
630
+ - type: recall_at_1000
631
+ value: 93.36
632
+ - type: recall_at_3
633
+ value: 37.775
634
+ - type: recall_at_5
635
+ value: 44.993
636
+ - task:
637
+ type: Retrieval
638
+ dataset:
639
+ type: cqadupstack/programmers
640
+ name: MTEB CQADupstackProgrammersRetrieval
641
+ config: default
642
+ split: test
643
+ revision: None
644
+ metrics:
645
+ - type: map_at_1
646
+ value: 21.195
647
+ - type: map_at_10
648
+ value: 29.003
649
+ - type: map_at_100
650
+ value: 30.379
651
+ - type: map_at_1000
652
+ value: 30.508000000000003
653
+ - type: map_at_3
654
+ value: 25.927
655
+ - type: map_at_5
656
+ value: 27.784
657
+ - type: mrr_at_1
658
+ value: 26.941
659
+ - type: mrr_at_10
660
+ value: 34.305
661
+ - type: mrr_at_100
662
+ value: 35.32
663
+ - type: mrr_at_1000
664
+ value: 35.386
665
+ - type: mrr_at_3
666
+ value: 31.735000000000003
667
+ - type: mrr_at_5
668
+ value: 33.213
669
+ - type: ndcg_at_1
670
+ value: 26.941
671
+ - type: ndcg_at_10
672
+ value: 34.31
673
+ - type: ndcg_at_100
674
+ value: 40.242
675
+ - type: ndcg_at_1000
676
+ value: 42.9
677
+ - type: ndcg_at_3
678
+ value: 29.198
679
+ - type: ndcg_at_5
680
+ value: 31.739
681
+ - type: precision_at_1
682
+ value: 26.941
683
+ - type: precision_at_10
684
+ value: 6.507000000000001
685
+ - type: precision_at_100
686
+ value: 1.124
687
+ - type: precision_at_1000
688
+ value: 0.154
689
+ - type: precision_at_3
690
+ value: 13.850999999999999
691
+ - type: precision_at_5
692
+ value: 10.411
693
+ - type: recall_at_1
694
+ value: 21.195
695
+ - type: recall_at_10
696
+ value: 45.083
697
+ - type: recall_at_100
698
+ value: 70.14200000000001
699
+ - type: recall_at_1000
700
+ value: 88.34100000000001
701
+ - type: recall_at_3
702
+ value: 31.175000000000004
703
+ - type: recall_at_5
704
+ value: 37.625
705
+ - task:
706
+ type: Retrieval
707
+ dataset:
708
+ type: mteb/cqadupstack
709
+ name: MTEB CQADupstackRetrieval
710
+ config: default
711
+ split: test
712
+ revision: None
713
+ metrics:
714
+ - type: map_at_1
715
+ value: 20.293916666666664
716
+ - type: map_at_10
717
+ value: 28.353666666666665
718
+ - type: map_at_100
719
+ value: 29.524333333333335
720
+ - type: map_at_1000
721
+ value: 29.652583333333332
722
+ - type: map_at_3
723
+ value: 25.727916666666665
724
+ - type: map_at_5
725
+ value: 27.170833333333334
726
+ - type: mrr_at_1
727
+ value: 25.21375
728
+ - type: mrr_at_10
729
+ value: 32.67591666666667
730
+ - type: mrr_at_100
731
+ value: 33.56233333333334
732
+ - type: mrr_at_1000
733
+ value: 33.63283333333334
734
+ - type: mrr_at_3
735
+ value: 30.415333333333333
736
+ - type: mrr_at_5
737
+ value: 31.679583333333333
738
+ - type: ndcg_at_1
739
+ value: 25.21375
740
+ - type: ndcg_at_10
741
+ value: 33.37108333333333
742
+ - type: ndcg_at_100
743
+ value: 38.57725
744
+ - type: ndcg_at_1000
745
+ value: 41.246833333333335
746
+ - type: ndcg_at_3
747
+ value: 28.98183333333334
748
+ - type: ndcg_at_5
749
+ value: 30.986083333333337
750
+ - type: precision_at_1
751
+ value: 25.21375
752
+ - type: precision_at_10
753
+ value: 6.200583333333333
754
+ - type: precision_at_100
755
+ value: 1.0527499999999999
756
+ - type: precision_at_1000
757
+ value: 0.14675000000000002
758
+ - type: precision_at_3
759
+ value: 13.808333333333334
760
+ - type: precision_at_5
761
+ value: 9.976416666666669
762
+ - type: recall_at_1
763
+ value: 20.293916666666664
764
+ - type: recall_at_10
765
+ value: 43.90833333333333
766
+ - type: recall_at_100
767
+ value: 67.26575
768
+ - type: recall_at_1000
769
+ value: 86.18591666666666
770
+ - type: recall_at_3
771
+ value: 31.387416666666667
772
+ - type: recall_at_5
773
+ value: 36.73883333333333
774
+ - task:
775
+ type: Retrieval
776
+ dataset:
777
+ type: cqadupstack/stats
778
+ name: MTEB CQADupstackStatsRetrieval
779
+ config: default
780
+ split: test
781
+ revision: None
782
+ metrics:
783
+ - type: map_at_1
784
+ value: 15.043000000000001
785
+ - type: map_at_10
786
+ value: 22.203
787
+ - type: map_at_100
788
+ value: 23.254
789
+ - type: map_at_1000
790
+ value: 23.362
791
+ - type: map_at_3
792
+ value: 20.157
793
+ - type: map_at_5
794
+ value: 21.201999999999998
795
+ - type: mrr_at_1
796
+ value: 17.485
797
+ - type: mrr_at_10
798
+ value: 24.729
799
+ - type: mrr_at_100
800
+ value: 25.715
801
+ - type: mrr_at_1000
802
+ value: 25.796999999999997
803
+ - type: mrr_at_3
804
+ value: 22.725
805
+ - type: mrr_at_5
806
+ value: 23.829
807
+ - type: ndcg_at_1
808
+ value: 17.485
809
+ - type: ndcg_at_10
810
+ value: 26.31
811
+ - type: ndcg_at_100
812
+ value: 31.722
813
+ - type: ndcg_at_1000
814
+ value: 34.621
815
+ - type: ndcg_at_3
816
+ value: 22.414
817
+ - type: ndcg_at_5
818
+ value: 24.125
819
+ - type: precision_at_1
820
+ value: 17.485
821
+ - type: precision_at_10
822
+ value: 4.601
823
+ - type: precision_at_100
824
+ value: 0.7849999999999999
825
+ - type: precision_at_1000
826
+ value: 0.11100000000000002
827
+ - type: precision_at_3
828
+ value: 10.327
829
+ - type: precision_at_5
830
+ value: 7.331
831
+ - type: recall_at_1
832
+ value: 15.043000000000001
833
+ - type: recall_at_10
834
+ value: 36.361
835
+ - type: recall_at_100
836
+ value: 61.63999999999999
837
+ - type: recall_at_1000
838
+ value: 83.443
839
+ - type: recall_at_3
840
+ value: 25.591
841
+ - type: recall_at_5
842
+ value: 29.808
843
+ - task:
844
+ type: Retrieval
845
+ dataset:
846
+ type: cqadupstack/tex
847
+ name: MTEB CQADupstackTexRetrieval
848
+ config: default
849
+ split: test
850
+ revision: None
851
+ metrics:
852
+ - type: map_at_1
853
+ value: 11.018
854
+ - type: map_at_10
855
+ value: 15.886
856
+ - type: map_at_100
857
+ value: 16.830000000000002
858
+ - type: map_at_1000
859
+ value: 16.956
860
+ - type: map_at_3
861
+ value: 14.222000000000001
862
+ - type: map_at_5
863
+ value: 15.110999999999999
864
+ - type: mrr_at_1
865
+ value: 14.625
866
+ - type: mrr_at_10
867
+ value: 19.677
868
+ - type: mrr_at_100
869
+ value: 20.532
870
+ - type: mrr_at_1000
871
+ value: 20.622
872
+ - type: mrr_at_3
873
+ value: 17.992
874
+ - type: mrr_at_5
875
+ value: 18.909000000000002
876
+ - type: ndcg_at_1
877
+ value: 14.625
878
+ - type: ndcg_at_10
879
+ value: 19.414
880
+ - type: ndcg_at_100
881
+ value: 24.152
882
+ - type: ndcg_at_1000
883
+ value: 27.433000000000003
884
+ - type: ndcg_at_3
885
+ value: 16.495
886
+ - type: ndcg_at_5
887
+ value: 17.742
888
+ - type: precision_at_1
889
+ value: 14.625
890
+ - type: precision_at_10
891
+ value: 3.833
892
+ - type: precision_at_100
893
+ value: 0.744
894
+ - type: precision_at_1000
895
+ value: 0.11900000000000001
896
+ - type: precision_at_3
897
+ value: 8.213
898
+ - type: precision_at_5
899
+ value: 6.036
900
+ - type: recall_at_1
901
+ value: 11.018
902
+ - type: recall_at_10
903
+ value: 26.346000000000004
904
+ - type: recall_at_100
905
+ value: 47.99
906
+ - type: recall_at_1000
907
+ value: 72.002
908
+ - type: recall_at_3
909
+ value: 17.762
910
+ - type: recall_at_5
911
+ value: 21.249000000000002
912
+ - task:
913
+ type: Retrieval
914
+ dataset:
915
+ type: cqadupstack/unix
916
+ name: MTEB CQADupstackUnixRetrieval
917
+ config: default
918
+ split: test
919
+ revision: None
920
+ metrics:
921
+ - type: map_at_1
922
+ value: 20.053
923
+ - type: map_at_10
924
+ value: 27.950000000000003
925
+ - type: map_at_100
926
+ value: 29.207
927
+ - type: map_at_1000
928
+ value: 29.309
929
+ - type: map_at_3
930
+ value: 25.612000000000002
931
+ - type: map_at_5
932
+ value: 26.793
933
+ - type: mrr_at_1
934
+ value: 24.813
935
+ - type: mrr_at_10
936
+ value: 32.297
937
+ - type: mrr_at_100
938
+ value: 33.312999999999995
939
+ - type: mrr_at_1000
940
+ value: 33.379999999999995
941
+ - type: mrr_at_3
942
+ value: 30.239
943
+ - type: mrr_at_5
944
+ value: 31.368000000000002
945
+ - type: ndcg_at_1
946
+ value: 24.813
947
+ - type: ndcg_at_10
948
+ value: 32.722
949
+ - type: ndcg_at_100
950
+ value: 38.603
951
+ - type: ndcg_at_1000
952
+ value: 41.11
953
+ - type: ndcg_at_3
954
+ value: 28.74
955
+ - type: ndcg_at_5
956
+ value: 30.341
957
+ - type: precision_at_1
958
+ value: 24.813
959
+ - type: precision_at_10
960
+ value: 5.83
961
+ - type: precision_at_100
962
+ value: 0.9860000000000001
963
+ - type: precision_at_1000
964
+ value: 0.13
965
+ - type: precision_at_3
966
+ value: 13.433
967
+ - type: precision_at_5
968
+ value: 9.384
969
+ - type: recall_at_1
970
+ value: 20.053
971
+ - type: recall_at_10
972
+ value: 42.867
973
+ - type: recall_at_100
974
+ value: 68.90899999999999
975
+ - type: recall_at_1000
976
+ value: 87.031
977
+ - type: recall_at_3
978
+ value: 31.606
979
+ - type: recall_at_5
980
+ value: 35.988
981
+ - task:
982
+ type: Retrieval
983
+ dataset:
984
+ type: cqadupstack/webmasters
985
+ name: MTEB CQADupstackWebmastersRetrieval
986
+ config: default
987
+ split: test
988
+ revision: None
989
+ metrics:
990
+ - type: map_at_1
991
+ value: 20.696
992
+ - type: map_at_10
993
+ value: 29.741
994
+ - type: map_at_100
995
+ value: 30.958999999999996
996
+ - type: map_at_1000
997
+ value: 31.22
998
+ - type: map_at_3
999
+ value: 26.679000000000002
1000
+ - type: map_at_5
1001
+ value: 28.244999999999997
1002
+ - type: mrr_at_1
1003
+ value: 27.272999999999996
1004
+ - type: mrr_at_10
1005
+ value: 35.101
1006
+ - type: mrr_at_100
1007
+ value: 35.91
1008
+ - type: mrr_at_1000
1009
+ value: 35.987
1010
+ - type: mrr_at_3
1011
+ value: 32.378
1012
+ - type: mrr_at_5
1013
+ value: 33.732
1014
+ - type: ndcg_at_1
1015
+ value: 27.272999999999996
1016
+ - type: ndcg_at_10
1017
+ value: 36.136
1018
+ - type: ndcg_at_100
1019
+ value: 40.9
1020
+ - type: ndcg_at_1000
1021
+ value: 44.184
1022
+ - type: ndcg_at_3
1023
+ value: 31.123
1024
+ - type: ndcg_at_5
1025
+ value: 33.182
1026
+ - type: precision_at_1
1027
+ value: 27.272999999999996
1028
+ - type: precision_at_10
1029
+ value: 7.489999999999999
1030
+ - type: precision_at_100
1031
+ value: 1.506
1032
+ - type: precision_at_1000
1033
+ value: 0.24
1034
+ - type: precision_at_3
1035
+ value: 15.348999999999998
1036
+ - type: precision_at_5
1037
+ value: 11.344
1038
+ - type: recall_at_1
1039
+ value: 20.696
1040
+ - type: recall_at_10
1041
+ value: 48.041
1042
+ - type: recall_at_100
1043
+ value: 71.316
1044
+ - type: recall_at_1000
1045
+ value: 92.794
1046
+ - type: recall_at_3
1047
+ value: 32.983000000000004
1048
+ - type: recall_at_5
1049
+ value: 38.627
1050
+ - task:
1051
+ type: Retrieval
1052
+ dataset:
1053
+ type: cqadupstack/wordpress
1054
+ name: MTEB CQADupstackWordpressRetrieval
1055
+ config: default
1056
+ split: test
1057
+ revision: None
1058
+ metrics:
1059
+ - type: map_at_1
1060
+ value: 13.567000000000002
1061
+ - type: map_at_10
1062
+ value: 19.326
1063
+ - type: map_at_100
1064
+ value: 20.164
1065
+ - type: map_at_1000
1066
+ value: 20.283
1067
+ - type: map_at_3
1068
+ value: 17.613
1069
+ - type: map_at_5
1070
+ value: 18.519
1071
+ - type: mrr_at_1
1072
+ value: 15.157000000000002
1073
+ - type: mrr_at_10
1074
+ value: 21.38
1075
+ - type: mrr_at_100
1076
+ value: 22.163
1077
+ - type: mrr_at_1000
1078
+ value: 22.261
1079
+ - type: mrr_at_3
1080
+ value: 19.624
1081
+ - type: mrr_at_5
1082
+ value: 20.548
1083
+ - type: ndcg_at_1
1084
+ value: 15.157000000000002
1085
+ - type: ndcg_at_10
1086
+ value: 23.044999999999998
1087
+ - type: ndcg_at_100
1088
+ value: 27.586
1089
+ - type: ndcg_at_1000
1090
+ value: 30.848
1091
+ - type: ndcg_at_3
1092
+ value: 19.506999999999998
1093
+ - type: ndcg_at_5
1094
+ value: 21.101
1095
+ - type: precision_at_1
1096
+ value: 15.157000000000002
1097
+ - type: precision_at_10
1098
+ value: 3.7150000000000003
1099
+ - type: precision_at_100
1100
+ value: 0.651
1101
+ - type: precision_at_1000
1102
+ value: 0.1
1103
+ - type: precision_at_3
1104
+ value: 8.626000000000001
1105
+ - type: precision_at_5
1106
+ value: 6.026
1107
+ - type: recall_at_1
1108
+ value: 13.567000000000002
1109
+ - type: recall_at_10
1110
+ value: 32.646
1111
+ - type: recall_at_100
1112
+ value: 54.225
1113
+ - type: recall_at_1000
1114
+ value: 79.12700000000001
1115
+ - type: recall_at_3
1116
+ value: 22.994
1117
+ - type: recall_at_5
1118
+ value: 26.912999999999997
1119
+ - task:
1120
+ type: Retrieval
1121
+ dataset:
1122
+ type: climate-fever
1123
+ name: MTEB ClimateFEVER
1124
+ config: default
1125
+ split: test
1126
+ revision: None
1127
+ metrics:
1128
+ - type: map_at_1
1129
+ value: 7.26
1130
+ - type: map_at_10
1131
+ value: 15.109
1132
+ - type: map_at_100
1133
+ value: 17.155
1134
+ - type: map_at_1000
1135
+ value: 17.354
1136
+ - type: map_at_3
1137
+ value: 11.772
1138
+ - type: map_at_5
1139
+ value: 13.542000000000002
1140
+ - type: mrr_at_1
1141
+ value: 16.678
1142
+ - type: mrr_at_10
1143
+ value: 29.470000000000002
1144
+ - type: mrr_at_100
1145
+ value: 30.676
1146
+ - type: mrr_at_1000
1147
+ value: 30.714999999999996
1148
+ - type: mrr_at_3
1149
+ value: 25.44
1150
+ - type: mrr_at_5
1151
+ value: 27.792
1152
+ - type: ndcg_at_1
1153
+ value: 16.678
1154
+ - type: ndcg_at_10
1155
+ value: 22.967000000000002
1156
+ - type: ndcg_at_100
1157
+ value: 31.253999999999998
1158
+ - type: ndcg_at_1000
1159
+ value: 34.748000000000005
1160
+ - type: ndcg_at_3
1161
+ value: 17.058
1162
+ - type: ndcg_at_5
1163
+ value: 19.43
1164
+ - type: precision_at_1
1165
+ value: 16.678
1166
+ - type: precision_at_10
1167
+ value: 7.974
1168
+ - type: precision_at_100
1169
+ value: 1.6740000000000002
1170
+ - type: precision_at_1000
1171
+ value: 0.232
1172
+ - type: precision_at_3
1173
+ value: 13.681
1174
+ - type: precision_at_5
1175
+ value: 11.322000000000001
1176
+ - type: recall_at_1
1177
+ value: 7.26
1178
+ - type: recall_at_10
1179
+ value: 30.407
1180
+ - type: recall_at_100
1181
+ value: 59.073
1182
+ - type: recall_at_1000
1183
+ value: 78.58800000000001
1184
+ - type: recall_at_3
1185
+ value: 16.493
1186
+ - type: recall_at_5
1187
+ value: 22.453
1188
+ - task:
1189
+ type: Retrieval
1190
+ dataset:
1191
+ type: dbpedia-entity
1192
+ name: MTEB DBPedia
1193
+ config: default
1194
+ split: test
1195
+ revision: None
1196
+ metrics:
1197
+ - type: map_at_1
1198
+ value: 5.176
1199
+ - type: map_at_10
1200
+ value: 11.951
1201
+ - type: map_at_100
1202
+ value: 16.208
1203
+ - type: map_at_1000
1204
+ value: 17.067
1205
+ - type: map_at_3
1206
+ value: 8.669
1207
+ - type: map_at_5
1208
+ value: 10.061
1209
+ - type: mrr_at_1
1210
+ value: 42.5
1211
+ - type: mrr_at_10
1212
+ value: 54.312000000000005
1213
+ - type: mrr_at_100
1214
+ value: 54.925999999999995
1215
+ - type: mrr_at_1000
1216
+ value: 54.959
1217
+ - type: mrr_at_3
1218
+ value: 52.292
1219
+ - type: mrr_at_5
1220
+ value: 53.554
1221
+ - type: ndcg_at_1
1222
+ value: 31.374999999999996
1223
+ - type: ndcg_at_10
1224
+ value: 25.480999999999998
1225
+ - type: ndcg_at_100
1226
+ value: 30.018
1227
+ - type: ndcg_at_1000
1228
+ value: 36.103
1229
+ - type: ndcg_at_3
1230
+ value: 27.712999999999997
1231
+ - type: ndcg_at_5
1232
+ value: 26.415
1233
+ - type: precision_at_1
1234
+ value: 42.5
1235
+ - type: precision_at_10
1236
+ value: 20.549999999999997
1237
+ - type: precision_at_100
1238
+ value: 6.387
1239
+ - type: precision_at_1000
1240
+ value: 1.204
1241
+ - type: precision_at_3
1242
+ value: 32.917
1243
+ - type: precision_at_5
1244
+ value: 27.400000000000002
1245
+ - type: recall_at_1
1246
+ value: 5.176
1247
+ - type: recall_at_10
1248
+ value: 18.335
1249
+ - type: recall_at_100
1250
+ value: 38.629999999999995
1251
+ - type: recall_at_1000
1252
+ value: 59.74699999999999
1253
+ - type: recall_at_3
1254
+ value: 10.36
1255
+ - type: recall_at_5
1256
+ value: 13.413
1257
+ - task:
1258
+ type: Classification
1259
+ dataset:
1260
+ type: mteb/emotion
1261
+ name: MTEB EmotionClassification
1262
+ config: default
1263
+ split: test
1264
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1265
+ metrics:
1266
+ - type: accuracy
1267
+ value: 48.885
1268
+ - type: f1
1269
+ value: 44.330258440550644
1270
+ - task:
1271
+ type: Retrieval
1272
+ dataset:
1273
+ type: fever
1274
+ name: MTEB FEVER
1275
+ config: default
1276
+ split: test
1277
+ revision: None
1278
+ metrics:
1279
+ - type: map_at_1
1280
+ value: 25.211
1281
+ - type: map_at_10
1282
+ value: 37.946999999999996
1283
+ - type: map_at_100
1284
+ value: 38.852
1285
+ - type: map_at_1000
1286
+ value: 38.896
1287
+ - type: map_at_3
1288
+ value: 34.445
1289
+ - type: map_at_5
1290
+ value: 36.451
1291
+ - type: mrr_at_1
1292
+ value: 27.453
1293
+ - type: mrr_at_10
1294
+ value: 40.505
1295
+ - type: mrr_at_100
1296
+ value: 41.342
1297
+ - type: mrr_at_1000
1298
+ value: 41.377
1299
+ - type: mrr_at_3
1300
+ value: 36.971
1301
+ - type: mrr_at_5
1302
+ value: 39.013999999999996
1303
+ - type: ndcg_at_1
1304
+ value: 27.453
1305
+ - type: ndcg_at_10
1306
+ value: 45.106
1307
+ - type: ndcg_at_100
1308
+ value: 49.357
1309
+ - type: ndcg_at_1000
1310
+ value: 50.546
1311
+ - type: ndcg_at_3
1312
+ value: 38.063
1313
+ - type: ndcg_at_5
1314
+ value: 41.603
1315
+ - type: precision_at_1
1316
+ value: 27.453
1317
+ - type: precision_at_10
1318
+ value: 7.136000000000001
1319
+ - type: precision_at_100
1320
+ value: 0.9390000000000001
1321
+ - type: precision_at_1000
1322
+ value: 0.106
1323
+ - type: precision_at_3
1324
+ value: 16.677
1325
+ - type: precision_at_5
1326
+ value: 11.899
1327
+ - type: recall_at_1
1328
+ value: 25.211
1329
+ - type: recall_at_10
1330
+ value: 64.964
1331
+ - type: recall_at_100
1332
+ value: 84.23
1333
+ - type: recall_at_1000
1334
+ value: 93.307
1335
+ - type: recall_at_3
1336
+ value: 45.936
1337
+ - type: recall_at_5
1338
+ value: 54.489
1339
+ - task:
1340
+ type: Retrieval
1341
+ dataset:
1342
+ type: fiqa
1343
+ name: MTEB FiQA2018
1344
+ config: default
1345
+ split: test
1346
+ revision: None
1347
+ metrics:
1348
+ - type: map_at_1
1349
+ value: 11.434
1350
+ - type: map_at_10
1351
+ value: 20.325
1352
+ - type: map_at_100
1353
+ value: 22.267
1354
+ - type: map_at_1000
1355
+ value: 22.46
1356
+ - type: map_at_3
1357
+ value: 16.864
1358
+ - type: map_at_5
1359
+ value: 18.584999999999997
1360
+ - type: mrr_at_1
1361
+ value: 24.074
1362
+ - type: mrr_at_10
1363
+ value: 32.487
1364
+ - type: mrr_at_100
1365
+ value: 33.595000000000006
1366
+ - type: mrr_at_1000
1367
+ value: 33.649
1368
+ - type: mrr_at_3
1369
+ value: 29.578
1370
+ - type: mrr_at_5
1371
+ value: 31.044
1372
+ - type: ndcg_at_1
1373
+ value: 24.074
1374
+ - type: ndcg_at_10
1375
+ value: 27.244
1376
+ - type: ndcg_at_100
1377
+ value: 35.244
1378
+ - type: ndcg_at_1000
1379
+ value: 38.964999999999996
1380
+ - type: ndcg_at_3
1381
+ value: 22.709
1382
+ - type: ndcg_at_5
1383
+ value: 24.114
1384
+ - type: precision_at_1
1385
+ value: 24.074
1386
+ - type: precision_at_10
1387
+ value: 8.21
1388
+ - type: precision_at_100
1389
+ value: 1.627
1390
+ - type: precision_at_1000
1391
+ value: 0.22999999999999998
1392
+ - type: precision_at_3
1393
+ value: 15.741
1394
+ - type: precision_at_5
1395
+ value: 12.037
1396
+ - type: recall_at_1
1397
+ value: 11.434
1398
+ - type: recall_at_10
1399
+ value: 35.423
1400
+ - type: recall_at_100
1401
+ value: 66.056
1402
+ - type: recall_at_1000
1403
+ value: 88.63799999999999
1404
+ - type: recall_at_3
1405
+ value: 20.968
1406
+ - type: recall_at_5
1407
+ value: 26.540999999999997
1408
+ - task:
1409
+ type: Retrieval
1410
+ dataset:
1411
+ type: hotpotqa
1412
+ name: MTEB HotpotQA
1413
+ config: default
1414
+ split: test
1415
+ revision: None
1416
+ metrics:
1417
+ - type: map_at_1
1418
+ value: 30.506
1419
+ - type: map_at_10
1420
+ value: 44.864
1421
+ - type: map_at_100
1422
+ value: 46.016
1423
+ - type: map_at_1000
1424
+ value: 46.1
1425
+ - type: map_at_3
1426
+ value: 41.518
1427
+ - type: map_at_5
1428
+ value: 43.461
1429
+ - type: mrr_at_1
1430
+ value: 61.013
1431
+ - type: mrr_at_10
1432
+ value: 69.918
1433
+ - type: mrr_at_100
1434
+ value: 70.327
1435
+ - type: mrr_at_1000
1436
+ value: 70.342
1437
+ - type: mrr_at_3
1438
+ value: 68.226
1439
+ - type: mrr_at_5
1440
+ value: 69.273
1441
+ - type: ndcg_at_1
1442
+ value: 61.013
1443
+ - type: ndcg_at_10
1444
+ value: 54.539
1445
+ - type: ndcg_at_100
1446
+ value: 58.819
1447
+ - type: ndcg_at_1000
1448
+ value: 60.473
1449
+ - type: ndcg_at_3
1450
+ value: 49.27
1451
+ - type: ndcg_at_5
1452
+ value: 51.993
1453
+ - type: precision_at_1
1454
+ value: 61.013
1455
+ - type: precision_at_10
1456
+ value: 11.757
1457
+ - type: precision_at_100
1458
+ value: 1.5110000000000001
1459
+ - type: precision_at_1000
1460
+ value: 0.173
1461
+ - type: precision_at_3
1462
+ value: 31.339
1463
+ - type: precision_at_5
1464
+ value: 20.959
1465
+ - type: recall_at_1
1466
+ value: 30.506
1467
+ - type: recall_at_10
1468
+ value: 58.785
1469
+ - type: recall_at_100
1470
+ value: 75.55
1471
+ - type: recall_at_1000
1472
+ value: 86.455
1473
+ - type: recall_at_3
1474
+ value: 47.009
1475
+ - type: recall_at_5
1476
+ value: 52.397000000000006
1477
+ - task:
1478
+ type: Classification
1479
+ dataset:
1480
+ type: mteb/imdb
1481
+ name: MTEB ImdbClassification
1482
+ config: default
1483
+ split: test
1484
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1485
+ metrics:
1486
+ - type: accuracy
1487
+ value: 77.954
1488
+ - type: ap
1489
+ value: 73.06067313842448
1490
+ - type: f1
1491
+ value: 77.6469083443121
1492
+ - task:
1493
+ type: Retrieval
1494
+ dataset:
1495
+ type: msmarco
1496
+ name: MTEB MSMARCO
1497
+ config: default
1498
+ split: dev
1499
+ revision: None
1500
+ metrics:
1501
+ - type: map_at_1
1502
+ value: 7.7170000000000005
1503
+ - type: map_at_10
1504
+ value: 14.696000000000002
1505
+ - type: map_at_100
1506
+ value: 15.973
1507
+ - type: map_at_1000
1508
+ value: 16.079
1509
+ - type: map_at_3
1510
+ value: 12.059000000000001
1511
+ - type: map_at_5
1512
+ value: 13.478000000000002
1513
+ - type: mrr_at_1
1514
+ value: 7.9079999999999995
1515
+ - type: mrr_at_10
1516
+ value: 14.972
1517
+ - type: mrr_at_100
1518
+ value: 16.235
1519
+ - type: mrr_at_1000
1520
+ value: 16.337
1521
+ - type: mrr_at_3
1522
+ value: 12.323
1523
+ - type: mrr_at_5
1524
+ value: 13.751
1525
+ - type: ndcg_at_1
1526
+ value: 7.9079999999999995
1527
+ - type: ndcg_at_10
1528
+ value: 19.131
1529
+ - type: ndcg_at_100
1530
+ value: 25.868000000000002
1531
+ - type: ndcg_at_1000
1532
+ value: 28.823999999999998
1533
+ - type: ndcg_at_3
1534
+ value: 13.611
1535
+ - type: ndcg_at_5
1536
+ value: 16.178
1537
+ - type: precision_at_1
1538
+ value: 7.9079999999999995
1539
+ - type: precision_at_10
1540
+ value: 3.4259999999999997
1541
+ - type: precision_at_100
1542
+ value: 0.687
1543
+ - type: precision_at_1000
1544
+ value: 0.094
1545
+ - type: precision_at_3
1546
+ value: 6.103
1547
+ - type: precision_at_5
1548
+ value: 4.951
1549
+ - type: recall_at_1
1550
+ value: 7.7170000000000005
1551
+ - type: recall_at_10
1552
+ value: 33.147999999999996
1553
+ - type: recall_at_100
1554
+ value: 65.55199999999999
1555
+ - type: recall_at_1000
1556
+ value: 88.748
1557
+ - type: recall_at_3
1558
+ value: 17.863
1559
+ - type: recall_at_5
1560
+ value: 24.083
1561
+ - task:
1562
+ type: Classification
1563
+ dataset:
1564
+ type: mteb/mtop_domain
1565
+ name: MTEB MTOPDomainClassification (en)
1566
+ config: en
1567
+ split: test
1568
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1569
+ metrics:
1570
+ - type: accuracy
1571
+ value: 95.48335613315093
1572
+ - type: f1
1573
+ value: 95.18813547597892
1574
+ - task:
1575
+ type: Classification
1576
+ dataset:
1577
+ type: mteb/mtop_intent
1578
+ name: MTEB MTOPIntentClassification (en)
1579
+ config: en
1580
+ split: test
1581
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1582
+ metrics:
1583
+ - type: accuracy
1584
+ value: 82.83857729138167
1585
+ - type: f1
1586
+ value: 63.61922697275075
1587
+ - task:
1588
+ type: Classification
1589
+ dataset:
1590
+ type: mteb/amazon_massive_intent
1591
+ name: MTEB MassiveIntentClassification (en)
1592
+ config: en
1593
+ split: test
1594
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1595
+ metrics:
1596
+ - type: accuracy
1597
+ value: 76.65433759246805
1598
+ - type: f1
1599
+ value: 73.24385243140212
1600
+ - task:
1601
+ type: Classification
1602
+ dataset:
1603
+ type: mteb/amazon_massive_scenario
1604
+ name: MTEB MassiveScenarioClassification (en)
1605
+ config: en
1606
+ split: test
1607
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1608
+ metrics:
1609
+ - type: accuracy
1610
+ value: 79.98655010087425
1611
+ - type: f1
1612
+ value: 79.3880305174127
1613
+ - task:
1614
+ type: Clustering
1615
+ dataset:
1616
+ type: mteb/medrxiv-clustering-p2p
1617
+ name: MTEB MedrxivClusteringP2P
1618
+ config: default
1619
+ split: test
1620
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1621
+ metrics:
1622
+ - type: v_measure
1623
+ value: 30.109152457220606
1624
+ - task:
1625
+ type: Clustering
1626
+ dataset:
1627
+ type: mteb/medrxiv-clustering-s2s
1628
+ name: MTEB MedrxivClusteringS2S
1629
+ config: default
1630
+ split: test
1631
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1632
+ metrics:
1633
+ - type: v_measure
1634
+ value: 26.928355856501696
1635
+ - task:
1636
+ type: Reranking
1637
+ dataset:
1638
+ type: mteb/mind_small
1639
+ name: MTEB MindSmallReranking
1640
+ config: default
1641
+ split: test
1642
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1643
+ metrics:
1644
+ - type: map
1645
+ value: 29.73337424086118
1646
+ - type: mrr
1647
+ value: 30.753319352871074
1648
+ - task:
1649
+ type: Retrieval
1650
+ dataset:
1651
+ type: nfcorpus
1652
+ name: MTEB NFCorpus
1653
+ config: default
1654
+ split: test
1655
+ revision: None
1656
+ metrics:
1657
+ - type: map_at_1
1658
+ value: 4.303
1659
+ - type: map_at_10
1660
+ value: 9.653
1661
+ - type: map_at_100
1662
+ value: 11.952
1663
+ - type: map_at_1000
1664
+ value: 13.126999999999999
1665
+ - type: map_at_3
1666
+ value: 6.976
1667
+ - type: map_at_5
1668
+ value: 8.292
1669
+ - type: mrr_at_1
1670
+ value: 35.913000000000004
1671
+ - type: mrr_at_10
1672
+ value: 45.827
1673
+ - type: mrr_at_100
1674
+ value: 46.587
1675
+ - type: mrr_at_1000
1676
+ value: 46.635
1677
+ - type: mrr_at_3
1678
+ value: 43.344
1679
+ - type: mrr_at_5
1680
+ value: 44.876
1681
+ - type: ndcg_at_1
1682
+ value: 34.056
1683
+ - type: ndcg_at_10
1684
+ value: 27.161
1685
+ - type: ndcg_at_100
1686
+ value: 25.552999999999997
1687
+ - type: ndcg_at_1000
1688
+ value: 34.671
1689
+ - type: ndcg_at_3
1690
+ value: 31.267
1691
+ - type: ndcg_at_5
1692
+ value: 29.896
1693
+ - type: precision_at_1
1694
+ value: 35.604
1695
+ - type: precision_at_10
1696
+ value: 19.969
1697
+ - type: precision_at_100
1698
+ value: 6.115
1699
+ - type: precision_at_1000
1700
+ value: 1.892
1701
+ - type: precision_at_3
1702
+ value: 29.825000000000003
1703
+ - type: precision_at_5
1704
+ value: 26.253999999999998
1705
+ - type: recall_at_1
1706
+ value: 4.303
1707
+ - type: recall_at_10
1708
+ value: 14.033999999999999
1709
+ - type: recall_at_100
1710
+ value: 28.250999999999998
1711
+ - type: recall_at_1000
1712
+ value: 58.751
1713
+ - type: recall_at_3
1714
+ value: 8.257
1715
+ - type: recall_at_5
1716
+ value: 10.761999999999999
1717
+ - task:
1718
+ type: Retrieval
1719
+ dataset:
1720
+ type: nq
1721
+ name: MTEB NQ
1722
+ config: default
1723
+ split: test
1724
+ revision: None
1725
+ metrics:
1726
+ - type: map_at_1
1727
+ value: 14.668000000000001
1728
+ - type: map_at_10
1729
+ value: 26.593
1730
+ - type: map_at_100
1731
+ value: 28.094
1732
+ - type: map_at_1000
1733
+ value: 28.155
1734
+ - type: map_at_3
1735
+ value: 22.054000000000002
1736
+ - type: map_at_5
1737
+ value: 24.583
1738
+ - type: mrr_at_1
1739
+ value: 17.063
1740
+ - type: mrr_at_10
1741
+ value: 29.061999999999998
1742
+ - type: mrr_at_100
1743
+ value: 30.281000000000002
1744
+ - type: mrr_at_1000
1745
+ value: 30.325000000000003
1746
+ - type: mrr_at_3
1747
+ value: 24.754
1748
+ - type: mrr_at_5
1749
+ value: 27.281
1750
+ - type: ndcg_at_1
1751
+ value: 17.034
1752
+ - type: ndcg_at_10
1753
+ value: 34.157
1754
+ - type: ndcg_at_100
1755
+ value: 40.988
1756
+ - type: ndcg_at_1000
1757
+ value: 42.382999999999996
1758
+ - type: ndcg_at_3
1759
+ value: 25.076999999999998
1760
+ - type: ndcg_at_5
1761
+ value: 29.572
1762
+ - type: precision_at_1
1763
+ value: 17.034
1764
+ - type: precision_at_10
1765
+ value: 6.561
1766
+ - type: precision_at_100
1767
+ value: 1.04
1768
+ - type: precision_at_1000
1769
+ value: 0.117
1770
+ - type: precision_at_3
1771
+ value: 12.167
1772
+ - type: precision_at_5
1773
+ value: 9.809
1774
+ - type: recall_at_1
1775
+ value: 14.668000000000001
1776
+ - type: recall_at_10
1777
+ value: 55.291999999999994
1778
+ - type: recall_at_100
1779
+ value: 85.82
1780
+ - type: recall_at_1000
1781
+ value: 96.164
1782
+ - type: recall_at_3
1783
+ value: 31.208999999999996
1784
+ - type: recall_at_5
1785
+ value: 41.766
1786
+ - task:
1787
+ type: Retrieval
1788
+ dataset:
1789
+ type: quora
1790
+ name: MTEB QuoraRetrieval
1791
+ config: default
1792
+ split: test
1793
+ revision: None
1794
+ metrics:
1795
+ - type: map_at_1
1796
+ value: 66.20899999999999
1797
+ - type: map_at_10
1798
+ value: 80.024
1799
+ - type: map_at_100
1800
+ value: 80.73
1801
+ - type: map_at_1000
1802
+ value: 80.753
1803
+ - type: map_at_3
1804
+ value: 76.82900000000001
1805
+ - type: map_at_5
1806
+ value: 78.866
1807
+ - type: mrr_at_1
1808
+ value: 76.25
1809
+ - type: mrr_at_10
1810
+ value: 83.382
1811
+ - type: mrr_at_100
1812
+ value: 83.535
1813
+ - type: mrr_at_1000
1814
+ value: 83.538
1815
+ - type: mrr_at_3
1816
+ value: 82.013
1817
+ - type: mrr_at_5
1818
+ value: 82.931
1819
+ - type: ndcg_at_1
1820
+ value: 76.25999999999999
1821
+ - type: ndcg_at_10
1822
+ value: 84.397
1823
+ - type: ndcg_at_100
1824
+ value: 85.988
1825
+ - type: ndcg_at_1000
1826
+ value: 86.18299999999999
1827
+ - type: ndcg_at_3
1828
+ value: 80.778
1829
+ - type: ndcg_at_5
1830
+ value: 82.801
1831
+ - type: precision_at_1
1832
+ value: 76.25999999999999
1833
+ - type: precision_at_10
1834
+ value: 12.952
1835
+ - type: precision_at_100
1836
+ value: 1.509
1837
+ - type: precision_at_1000
1838
+ value: 0.156
1839
+ - type: precision_at_3
1840
+ value: 35.323
1841
+ - type: precision_at_5
1842
+ value: 23.524
1843
+ - type: recall_at_1
1844
+ value: 66.20899999999999
1845
+ - type: recall_at_10
1846
+ value: 93.108
1847
+ - type: recall_at_100
1848
+ value: 98.817
1849
+ - type: recall_at_1000
1850
+ value: 99.857
1851
+ - type: recall_at_3
1852
+ value: 83.031
1853
+ - type: recall_at_5
1854
+ value: 88.441
1855
+ - task:
1856
+ type: Clustering
1857
+ dataset:
1858
+ type: mteb/reddit-clustering
1859
+ name: MTEB RedditClustering
1860
+ config: default
1861
+ split: test
1862
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1863
+ metrics:
1864
+ - type: v_measure
1865
+ value: 41.82535503883439
1866
+ - task:
1867
+ type: Clustering
1868
+ dataset:
1869
+ type: mteb/reddit-clustering-p2p
1870
+ name: MTEB RedditClusteringP2P
1871
+ config: default
1872
+ split: test
1873
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1874
+ metrics:
1875
+ - type: v_measure
1876
+ value: 62.077510084458055
1877
+ - task:
1878
+ type: Retrieval
1879
+ dataset:
1880
+ type: scidocs
1881
+ name: MTEB SCIDOCS
1882
+ config: default
1883
+ split: test
1884
+ revision: None
1885
+ metrics:
1886
+ - type: map_at_1
1887
+ value: 3.383
1888
+ - type: map_at_10
1889
+ value: 8.839
1890
+ - type: map_at_100
1891
+ value: 10.876
1892
+ - type: map_at_1000
1893
+ value: 11.201
1894
+ - type: map_at_3
1895
+ value: 6.361
1896
+ - type: map_at_5
1897
+ value: 7.536
1898
+ - type: mrr_at_1
1899
+ value: 16.6
1900
+ - type: mrr_at_10
1901
+ value: 26.003999999999998
1902
+ - type: mrr_at_100
1903
+ value: 27.271
1904
+ - type: mrr_at_1000
1905
+ value: 27.354
1906
+ - type: mrr_at_3
1907
+ value: 22.900000000000002
1908
+ - type: mrr_at_5
1909
+ value: 24.58
1910
+ - type: ndcg_at_1
1911
+ value: 16.6
1912
+ - type: ndcg_at_10
1913
+ value: 15.345
1914
+ - type: ndcg_at_100
1915
+ value: 23.659
1916
+ - type: ndcg_at_1000
1917
+ value: 29.537000000000003
1918
+ - type: ndcg_at_3
1919
+ value: 14.283999999999999
1920
+ - type: ndcg_at_5
1921
+ value: 12.509999999999998
1922
+ - type: precision_at_1
1923
+ value: 16.6
1924
+ - type: precision_at_10
1925
+ value: 8.17
1926
+ - type: precision_at_100
1927
+ value: 2.028
1928
+ - type: precision_at_1000
1929
+ value: 0.34299999999999997
1930
+ - type: precision_at_3
1931
+ value: 13.633000000000001
1932
+ - type: precision_at_5
1933
+ value: 11.16
1934
+ - type: recall_at_1
1935
+ value: 3.383
1936
+ - type: recall_at_10
1937
+ value: 16.557
1938
+ - type: recall_at_100
1939
+ value: 41.123
1940
+ - type: recall_at_1000
1941
+ value: 69.67999999999999
1942
+ - type: recall_at_3
1943
+ value: 8.298
1944
+ - type: recall_at_5
1945
+ value: 11.322000000000001
1946
+ - task:
1947
+ type: STS
1948
+ dataset:
1949
+ type: mteb/sickr-sts
1950
+ name: MTEB SICK-R
1951
+ config: default
1952
+ split: test
1953
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1954
+ metrics:
1955
+ - type: cos_sim_spearman
1956
+ value: 75.55405115197729
1957
+ - task:
1958
+ type: STS
1959
+ dataset:
1960
+ type: mteb/sts12-sts
1961
+ name: MTEB STS12
1962
+ config: default
1963
+ split: test
1964
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1965
+ metrics:
1966
+ - type: cos_sim_spearman
1967
+ value: 67.65074099726466
1968
+ - task:
1969
+ type: STS
1970
+ dataset:
1971
+ type: mteb/sts13-sts
1972
+ name: MTEB STS13
1973
+ config: default
1974
+ split: test
1975
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1976
+ metrics:
1977
+ - type: cos_sim_spearman
1978
+ value: 83.89765011154986
1979
+ - task:
1980
+ type: STS
1981
+ dataset:
1982
+ type: mteb/sts14-sts
1983
+ name: MTEB STS14
1984
+ config: default
1985
+ split: test
1986
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1987
+ metrics:
1988
+ - type: cos_sim_spearman
1989
+ value: 76.97256789216159
1990
+ - task:
1991
+ type: STS
1992
+ dataset:
1993
+ type: mteb/sts15-sts
1994
+ name: MTEB STS15
1995
+ config: default
1996
+ split: test
1997
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1998
+ metrics:
1999
+ - type: cos_sim_spearman
2000
+ value: 83.80216382863031
2001
+ - task:
2002
+ type: STS
2003
+ dataset:
2004
+ type: mteb/sts16-sts
2005
+ name: MTEB STS16
2006
+ config: default
2007
+ split: test
2008
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2009
+ metrics:
2010
+ - type: cos_sim_spearman
2011
+ value: 81.90574806413879
2012
+ - task:
2013
+ type: STS
2014
+ dataset:
2015
+ type: mteb/sts17-crosslingual-sts
2016
+ name: MTEB STS17 (en-en)
2017
+ config: en-en
2018
+ split: test
2019
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2020
+ metrics:
2021
+ - type: cos_sim_spearman
2022
+ value: 85.58485422591949
2023
+ - task:
2024
+ type: STS
2025
+ dataset:
2026
+ type: mteb/sts22-crosslingual-sts
2027
+ name: MTEB STS22 (en)
2028
+ config: en
2029
+ split: test
2030
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2031
+ metrics:
2032
+ - type: cos_sim_spearman
2033
+ value: 65.92967262944444
2034
+ - task:
2035
+ type: STS
2036
+ dataset:
2037
+ type: mteb/stsbenchmark-sts
2038
+ name: MTEB STSBenchmark
2039
+ config: default
2040
+ split: test
2041
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2042
+ metrics:
2043
+ - type: cos_sim_spearman
2044
+ value: 80.41509666334721
2045
+ - task:
2046
+ type: Reranking
2047
+ dataset:
2048
+ type: mteb/scidocs-reranking
2049
+ name: MTEB SciDocsRR
2050
+ config: default
2051
+ split: test
2052
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2053
+ metrics:
2054
+ - type: map
2055
+ value: 77.81287769479543
2056
+ - type: mrr
2057
+ value: 94.13409665860645
2058
+ - task:
2059
+ type: Retrieval
2060
+ dataset:
2061
+ type: scifact
2062
+ name: MTEB SciFact
2063
+ config: default
2064
+ split: test
2065
+ revision: None
2066
+ metrics:
2067
+ - type: map_at_1
2068
+ value: 52.093999999999994
2069
+ - type: map_at_10
2070
+ value: 63.641999999999996
2071
+ - type: map_at_100
2072
+ value: 64.402
2073
+ - type: map_at_1000
2074
+ value: 64.416
2075
+ - type: map_at_3
2076
+ value: 60.878
2077
+ - type: map_at_5
2078
+ value: 62.778
2079
+ - type: mrr_at_1
2080
+ value: 55.333
2081
+ - type: mrr_at_10
2082
+ value: 65.139
2083
+ - type: mrr_at_100
2084
+ value: 65.75999999999999
2085
+ - type: mrr_at_1000
2086
+ value: 65.77199999999999
2087
+ - type: mrr_at_3
2088
+ value: 62.944
2089
+ - type: mrr_at_5
2090
+ value: 64.511
2091
+ - type: ndcg_at_1
2092
+ value: 55.333
2093
+ - type: ndcg_at_10
2094
+ value: 68.675
2095
+ - type: ndcg_at_100
2096
+ value: 71.794
2097
+ - type: ndcg_at_1000
2098
+ value: 72.18299999999999
2099
+ - type: ndcg_at_3
2100
+ value: 63.977
2101
+ - type: ndcg_at_5
2102
+ value: 66.866
2103
+ - type: precision_at_1
2104
+ value: 55.333
2105
+ - type: precision_at_10
2106
+ value: 9.232999999999999
2107
+ - type: precision_at_100
2108
+ value: 1.087
2109
+ - type: precision_at_1000
2110
+ value: 0.11199999999999999
2111
+ - type: precision_at_3
2112
+ value: 25.667
2113
+ - type: precision_at_5
2114
+ value: 17.0
2115
+ - type: recall_at_1
2116
+ value: 52.093999999999994
2117
+ - type: recall_at_10
2118
+ value: 82.506
2119
+ - type: recall_at_100
2120
+ value: 95.933
2121
+ - type: recall_at_1000
2122
+ value: 99.0
2123
+ - type: recall_at_3
2124
+ value: 70.078
2125
+ - type: recall_at_5
2126
+ value: 77.35600000000001
2127
+ - task:
2128
+ type: PairClassification
2129
+ dataset:
2130
+ type: mteb/sprintduplicatequestions-pairclassification
2131
+ name: MTEB SprintDuplicateQuestions
2132
+ config: default
2133
+ split: test
2134
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2135
+ metrics:
2136
+ - type: cos_sim_accuracy
2137
+ value: 99.7128712871287
2138
+ - type: cos_sim_ap
2139
+ value: 91.30057039245253
2140
+ - type: cos_sim_f1
2141
+ value: 85.35480624056368
2142
+ - type: cos_sim_precision
2143
+ value: 85.91691995947315
2144
+ - type: cos_sim_recall
2145
+ value: 84.8
2146
+ - type: dot_accuracy
2147
+ value: 99.35346534653465
2148
+ - type: dot_ap
2149
+ value: 67.929309733355
2150
+ - type: dot_f1
2151
+ value: 63.94205897568547
2152
+ - type: dot_precision
2153
+ value: 66.2379421221865
2154
+ - type: dot_recall
2155
+ value: 61.8
2156
+ - type: euclidean_accuracy
2157
+ value: 99.69009900990099
2158
+ - type: euclidean_ap
2159
+ value: 89.62179420600057
2160
+ - type: euclidean_f1
2161
+ value: 83.93039918116682
2162
+ - type: euclidean_precision
2163
+ value: 85.9538784067086
2164
+ - type: euclidean_recall
2165
+ value: 82.0
2166
+ - type: manhattan_accuracy
2167
+ value: 99.70990099009902
2168
+ - type: manhattan_ap
2169
+ value: 90.29611631593602
2170
+ - type: manhattan_f1
2171
+ value: 84.81729284611424
2172
+ - type: manhattan_precision
2173
+ value: 87.38069989395547
2174
+ - type: manhattan_recall
2175
+ value: 82.39999999999999
2176
+ - type: max_accuracy
2177
+ value: 99.7128712871287
2178
+ - type: max_ap
2179
+ value: 91.30057039245253
2180
+ - type: max_f1
2181
+ value: 85.35480624056368
2182
+ - task:
2183
+ type: Clustering
2184
+ dataset:
2185
+ type: mteb/stackexchange-clustering
2186
+ name: MTEB StackExchangeClustering
2187
+ config: default
2188
+ split: test
2189
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2190
+ metrics:
2191
+ - type: v_measure
2192
+ value: 67.33611278831218
2193
+ - task:
2194
+ type: Clustering
2195
+ dataset:
2196
+ type: mteb/stackexchange-clustering-p2p
2197
+ name: MTEB StackExchangeClusteringP2P
2198
+ config: default
2199
+ split: test
2200
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2201
+ metrics:
2202
+ - type: v_measure
2203
+ value: 34.504437768624214
2204
+ - task:
2205
+ type: Reranking
2206
+ dataset:
2207
+ type: mteb/stackoverflowdupquestions-reranking
2208
+ name: MTEB StackOverflowDupQuestions
2209
+ config: default
2210
+ split: test
2211
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2212
+ metrics:
2213
+ - type: map
2214
+ value: 49.80014786474266
2215
+ - type: mrr
2216
+ value: 50.468909154570916
2217
+ - task:
2218
+ type: Summarization
2219
+ dataset:
2220
+ type: mteb/summeval
2221
+ name: MTEB SummEval
2222
+ config: default
2223
+ split: test
2224
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2225
+ metrics:
2226
+ - type: cos_sim_pearson
2227
+ value: 30.677648147466808
2228
+ - type: cos_sim_spearman
2229
+ value: 30.191761045901888
2230
+ - type: dot_pearson
2231
+ value: 23.16759191245942
2232
+ - type: dot_spearman
2233
+ value: 23.186942570638486
2234
+ - task:
2235
+ type: Retrieval
2236
+ dataset:
2237
+ type: trec-covid
2238
+ name: MTEB TRECCOVID
2239
+ config: default
2240
+ split: test
2241
+ revision: None
2242
+ metrics:
2243
+ - type: map_at_1
2244
+ value: 0.214
2245
+ - type: map_at_10
2246
+ value: 1.2309999999999999
2247
+ - type: map_at_100
2248
+ value: 5.867
2249
+ - type: map_at_1000
2250
+ value: 14.671999999999999
2251
+ - type: map_at_3
2252
+ value: 0.519
2253
+ - type: map_at_5
2254
+ value: 0.764
2255
+ - type: mrr_at_1
2256
+ value: 82.0
2257
+ - type: mrr_at_10
2258
+ value: 87.519
2259
+ - type: mrr_at_100
2260
+ value: 87.519
2261
+ - type: mrr_at_1000
2262
+ value: 87.536
2263
+ - type: mrr_at_3
2264
+ value: 86.333
2265
+ - type: mrr_at_5
2266
+ value: 87.233
2267
+ - type: ndcg_at_1
2268
+ value: 77.0
2269
+ - type: ndcg_at_10
2270
+ value: 55.665
2271
+ - type: ndcg_at_100
2272
+ value: 39.410000000000004
2273
+ - type: ndcg_at_1000
2274
+ value: 37.21
2275
+ - type: ndcg_at_3
2276
+ value: 65.263
2277
+ - type: ndcg_at_5
2278
+ value: 61.424
2279
+ - type: precision_at_1
2280
+ value: 82.0
2281
+ - type: precision_at_10
2282
+ value: 55.400000000000006
2283
+ - type: precision_at_100
2284
+ value: 39.04
2285
+ - type: precision_at_1000
2286
+ value: 16.788
2287
+ - type: precision_at_3
2288
+ value: 67.333
2289
+ - type: precision_at_5
2290
+ value: 62.8
2291
+ - type: recall_at_1
2292
+ value: 0.214
2293
+ - type: recall_at_10
2294
+ value: 1.4200000000000002
2295
+ - type: recall_at_100
2296
+ value: 9.231
2297
+ - type: recall_at_1000
2298
+ value: 35.136
2299
+ - type: recall_at_3
2300
+ value: 0.544
2301
+ - type: recall_at_5
2302
+ value: 0.832
2303
+ - task:
2304
+ type: Retrieval
2305
+ dataset:
2306
+ type: webis-touche2020
2307
+ name: MTEB Touche2020
2308
+ config: default
2309
+ split: test
2310
+ revision: None
2311
+ metrics:
2312
+ - type: map_at_1
2313
+ value: 0.41000000000000003
2314
+ - type: map_at_10
2315
+ value: 2.32
2316
+ - type: map_at_100
2317
+ value: 4.077
2318
+ - type: map_at_1000
2319
+ value: 4.9430000000000005
2320
+ - type: map_at_3
2321
+ value: 1.087
2322
+ - type: map_at_5
2323
+ value: 1.466
2324
+ - type: mrr_at_1
2325
+ value: 6.122
2326
+ - type: mrr_at_10
2327
+ value: 13.999
2328
+ - type: mrr_at_100
2329
+ value: 16.524
2330
+ - type: mrr_at_1000
2331
+ value: 16.567999999999998
2332
+ - type: mrr_at_3
2333
+ value: 11.224
2334
+ - type: mrr_at_5
2335
+ value: 13.163
2336
+ - type: ndcg_at_1
2337
+ value: 5.102
2338
+ - type: ndcg_at_10
2339
+ value: 6.542000000000001
2340
+ - type: ndcg_at_100
2341
+ value: 14.127
2342
+ - type: ndcg_at_1000
2343
+ value: 24.396
2344
+ - type: ndcg_at_3
2345
+ value: 5.653
2346
+ - type: ndcg_at_5
2347
+ value: 5.5649999999999995
2348
+ - type: precision_at_1
2349
+ value: 6.122
2350
+ - type: precision_at_10
2351
+ value: 7.142999999999999
2352
+ - type: precision_at_100
2353
+ value: 3.51
2354
+ - type: precision_at_1000
2355
+ value: 0.9860000000000001
2356
+ - type: precision_at_3
2357
+ value: 6.802999999999999
2358
+ - type: precision_at_5
2359
+ value: 6.938999999999999
2360
+ - type: recall_at_1
2361
+ value: 0.41000000000000003
2362
+ - type: recall_at_10
2363
+ value: 5.627
2364
+ - type: recall_at_100
2365
+ value: 23.121
2366
+ - type: recall_at_1000
2367
+ value: 54.626
2368
+ - type: recall_at_3
2369
+ value: 1.763
2370
+ - type: recall_at_5
2371
+ value: 3.013
2372
+ - task:
2373
+ type: Classification
2374
+ dataset:
2375
+ type: mteb/toxic_conversations_50k
2376
+ name: MTEB ToxicConversationsClassification
2377
+ config: default
2378
+ split: test
2379
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2380
+ metrics:
2381
+ - type: accuracy
2382
+ value: 70.71119999999999
2383
+ - type: ap
2384
+ value: 15.1342268718371
2385
+ - type: f1
2386
+ value: 55.043262693594855
2387
+ - task:
2388
+ type: Classification
2389
+ dataset:
2390
+ type: mteb/tweet_sentiment_extraction
2391
+ name: MTEB TweetSentimentExtractionClassification
2392
+ config: default
2393
+ split: test
2394
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2395
+ metrics:
2396
+ - type: accuracy
2397
+ value: 60.89983022071308
2398
+ - type: f1
2399
+ value: 61.13086468149106
2400
+ - task:
2401
+ type: Clustering
2402
+ dataset:
2403
+ type: mteb/twentynewsgroups-clustering
2404
+ name: MTEB TwentyNewsgroupsClustering
2405
+ config: default
2406
+ split: test
2407
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2408
+ metrics:
2409
+ - type: v_measure
2410
+ value: 30.264802332456515
2411
+ - task:
2412
+ type: PairClassification
2413
+ dataset:
2414
+ type: mteb/twittersemeval2015-pairclassification
2415
+ name: MTEB TwitterSemEval2015
2416
+ config: default
2417
+ split: test
2418
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2419
+ metrics:
2420
+ - type: cos_sim_accuracy
2421
+ value: 84.46086904690947
2422
+ - type: cos_sim_ap
2423
+ value: 68.76039123104324
2424
+ - type: cos_sim_f1
2425
+ value: 63.002224839680665
2426
+ - type: cos_sim_precision
2427
+ value: 62.503245910153204
2428
+ - type: cos_sim_recall
2429
+ value: 63.50923482849604
2430
+ - type: dot_accuracy
2431
+ value: 80.07391071109257
2432
+ - type: dot_ap
2433
+ value: 53.43322643579626
2434
+ - type: dot_f1
2435
+ value: 52.6850065983149
2436
+ - type: dot_precision
2437
+ value: 42.81471704339218
2438
+ - type: dot_recall
2439
+ value: 68.46965699208444
2440
+ - type: euclidean_accuracy
2441
+ value: 84.2701317279609
2442
+ - type: euclidean_ap
2443
+ value: 67.55078414631596
2444
+ - type: euclidean_f1
2445
+ value: 62.90723537877797
2446
+ - type: euclidean_precision
2447
+ value: 62.392940565792884
2448
+ - type: euclidean_recall
2449
+ value: 63.43007915567283
2450
+ - type: manhattan_accuracy
2451
+ value: 84.22244739822375
2452
+ - type: manhattan_ap
2453
+ value: 67.92488847948273
2454
+ - type: manhattan_f1
2455
+ value: 62.99132210311383
2456
+ - type: manhattan_precision
2457
+ value: 60.99851705388038
2458
+ - type: manhattan_recall
2459
+ value: 65.11873350923483
2460
+ - type: max_accuracy
2461
+ value: 84.46086904690947
2462
+ - type: max_ap
2463
+ value: 68.76039123104324
2464
+ - type: max_f1
2465
+ value: 63.002224839680665
2466
+ - task:
2467
+ type: PairClassification
2468
+ dataset:
2469
+ type: mteb/twitterurlcorpus-pairclassification
2470
+ name: MTEB TwitterURLCorpus
2471
+ config: default
2472
+ split: test
2473
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2474
+ metrics:
2475
+ - type: cos_sim_accuracy
2476
+ value: 87.71296619707377
2477
+ - type: cos_sim_ap
2478
+ value: 82.76174215711472
2479
+ - type: cos_sim_f1
2480
+ value: 75.73585592141168
2481
+ - type: cos_sim_precision
2482
+ value: 71.79416430985721
2483
+ - type: cos_sim_recall
2484
+ value: 80.1355097012627
2485
+ - type: dot_accuracy
2486
+ value: 85.62502425583111
2487
+ - type: dot_ap
2488
+ value: 77.50549495030725
2489
+ - type: dot_f1
2490
+ value: 71.47900863425035
2491
+ - type: dot_precision
2492
+ value: 65.4587361546834
2493
+ - type: dot_recall
2494
+ value: 78.71881736987989
2495
+ - type: euclidean_accuracy
2496
+ value: 87.12694531765437
2497
+ - type: euclidean_ap
2498
+ value: 81.63583409712018
2499
+ - type: euclidean_f1
2500
+ value: 74.50966015324268
2501
+ - type: euclidean_precision
2502
+ value: 71.11764294212331
2503
+ - type: euclidean_recall
2504
+ value: 78.24145364952264
2505
+ - type: manhattan_accuracy
2506
+ value: 87.35009896379088
2507
+ - type: manhattan_ap
2508
+ value: 82.20417545366242
2509
+ - type: manhattan_f1
2510
+ value: 74.84157622550805
2511
+ - type: manhattan_precision
2512
+ value: 71.00898410504493
2513
+ - type: manhattan_recall
2514
+ value: 79.11148752694795
2515
+ - type: max_accuracy
2516
+ value: 87.71296619707377
2517
+ - type: max_ap
2518
+ value: 82.76174215711472
2519
+ - type: max_f1
2520
+ value: 75.73585592141168
2521
  ---
2522
 
2523
  # LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders