File size: 16,715 Bytes
28dfa1c b7bec6b 28dfa1c d0c2b23 28dfa1c ccf01e1 731c46c c57d110 0260de3 c57d110 731c46c 8bb99f5 c57d110 29e7be5 0260de3 731c46c 8bb99f5 c57d110 303bb8e 731c46c f436e2b aba6083 f576567 f436e2b 7cff80c a6038f2 7cff80c a6038f2 7cff80c a6038f2 7cff80c 28dfa1c a1b5bd3 d7b7220 a1b5bd3 28dfa1c d0d7824 dbdef5f 29e7be5 277e69e e1f5660 b2afa7e 2359491 c033882 29e7be5 4cd5437 277e69e 1de30ac 519cc77 b2afa7e 2359491 29e7be5 47300a8 7a9887f ddd7854 ec61a06 ddd7854 37b7280 277e69e 29e7be5 277e69e 29e7be5 277e69e 29e7be5 277e69e 29e7be5 37b3542 2164897 65792a4 37b3542 277e69e 37b3542 277e69e 37b3542 c57d110 b7bec6b c57d110 d0d7824 7472408 b7bec6b 7472408 f7fbd24 f205daf f7fbd24 f205daf f7fbd24 c85462e f7fbd24 8256038 29e7be5 277e69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
---
pipeline_tag: text-generation
license: apache-2.0
language:
- zh
---
# Model Card for Breeze-7B-Instruct-v0.1
Breeze-7B is a language model that builds upon the foundation of [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1), specifically enhanced for Traditional Chinese.
[Breeze-7B-Base-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0.1) introduces an expanded vocabulary with additional 30,000 Traditional Chinese tokens and
is pre-trained on a substantial dataset of 250GB of Traditional Chinese content.
With the expanded vocabulary, the base model operates at twice the inference speed for Traditional Chinese characters compared to Mistral-7B. [See [Inference Performance](#inference-performance).]
This achievement marks a significant milestone as it is the first instance of vocabulary expansion in a model tailored for Traditional Chinese.
[Breeze-7B-Instruct-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0.1) derives from the base model Breeze-7B-Base-v0.1
and has undergone supervised fine-tuning with over 1 million instances to
sharpen its capabilities. This fine-tuned model demonstrates impressive performance in benchmarks for both English and Traditional Chinese, surpassing the results of
Taiwan-LLM-7B-v2.1-chat, Taiwan-LLM-13B-v2.0-chat and Qwen-7B-chat in Traditional Chinese assessments. It also excels in some benchmarks against Yi-6B-Chat.
In English evaluations, Breeze-7B-Instruct-v0.1 shows comparable results to Mistral-7B-Instruct-v0.1 on the MMLU and MT-Bench benchmarks. [See [Chat Model Performance](#chat-model-performance).]
[Breeze-7B-Instruct-64k-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0.1) is an extension to Breeze-7B-Instruct-v0.1
to enable 64k
context length, which is equivalent to 88k Traditional Chinese characters. With minimal sacrifice in the performance of the regular benchmarks,
Breeze-7B-Instruct-64k-v0.1 can solve tasks such as question answering and summarization on document-level inputs. [See [Long-context Performance](#long-context-performance).]
*A project by the members (in alphabetical order): Chan-Jan Hsu 許湛然, Chang-Le Liu 劉昶樂, Feng-Ting Liao 廖峰挺, Po-Chun Hsu 許博竣, Yi-Chang Chen 陳宜昌, and the supervisor Da-Shan Shiu 許大山.*
## Features
- Breeze-7B-Base-v0.1
- Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
- 8k tokens context length
- Breeze-7B-Instruct-v0.1
- Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
- 8k tokens context length
- Multi-turn dialogue (without special handling for harmfulness)
- Breeze-7B-Instruct-64k-v0.1
- Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
- 64k tokens context length
- Multi-turn dialogue (without special handling for harmfulness)
## Model Details
- Breeze-7B-Base-v0.1
- Finetuned from: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- Model type: Causal decoder-only transformer language model
- Language: English and Traditional Chinese (zh-tw)
- Breeze-7B-Instruct-v0.1
- Finetuned from: [MediaTek-Research/Breeze-7B-Base-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0.1)
- Model type: Causal decoder-only transformer language model
- Language: English and Traditional Chinese (zh-tw)
- Breeze-7B-Instruct-64k-v0.1
- Finetuned from: [MediaTek-Research/Breeze-7B-Instruct-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0.1)
- Model type: Causal decoder-only transformer language model
- Language: English and Traditional Chinese (zh-tw)
## Base Model Performance
**TMMLU+**, **DRCD**, and **Table** source from [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2).
[MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2) derives from [TCEval-v1](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval)
and [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus). **MMLU** sources from [hails/mmlu_no_train](https://huggingface.co/datasets/hails/mmlu_no_train).
We use the code revised from [EleutherAI/lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate **TMMLU+**, **DRCD**, **Table**, and **MMLU**.
| Models | |↑ TMMLU+ (ACC) | DRCD (EM) | Table (ACC) | MMLU (ACC) |
|----------------------------------------------|--------|--------------|-------------|-------------|------------|
| | |TC, Knowledge |TC, Reasoning|TC, Reasoning|EN, Knowledge|
| | | 5 shot | 3 shot | 5 shot | 5 shot |
| [Yi-34B](https://huggingface.co/01-ai/Yi-34B)| 34B | 63.10 | 84.57 | 49.31 | 77.42 |
| [Qwen-14B](https://huggingface.co/01-ai/Qwen/Qwen-14B)| 14B | 51.30 | 16.95 * | 50.69 | 68.83 |
| [Yi-6B](https://huggingface.co/01-ai/Yi-6B) | 6B | 49.63 | 76.61 | 34.72 | 65.35 |
| [Qwen-7B](https://huggingface.co/01-ai/Qwen/Qwen-7B)| 7B | 42.84 | 0.0 * | 39.58 | 61.00 |
| [**Breeze-7B-Base-v0.1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0.1) | 7B | 40.35 | 81.13 | 28.47 | 61.63 |
| [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)| 7B | 36.93 | 79.27 | 27.78 | 64.89 |
\* Few-shot learning cannot effectively guide the model to generate the proper answer.
**Category ACC of TMMLU+ (5 shot)**
| Models | STEM | Social Science | Humanities | Other | ↑ AVG |
|----------------------------------|--------------|----------------|------------|------------|-------|
| Yi-34B | 56.03 | 73.06 | 61.12 | 62.19 | 63.10 |
| Qwen-14B | 46.51 | 58.20 | 51.12 | 49.38 | 51.30 |
| Yi-6B | 41.14 | 57.77 | 50.22 | 49.39 | 49.63 |
| Qwen-7B | 28.25 | 47.80 | 43.14 | 42.17 | 42.84 |
| **Breeze-7B-Base-v0.1** | 35.74 | 46.08 | 40.29 | 39.27 | 40.35 |
| Mistral-7B-v0.1 | 33.01 | 42.23 | 35.86 | 37.63 | 36.93 |
## Chat Model Performance
**TMMLU+**, **DRCD**, **Table**, and **MT-Bench-tw** source from [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2).
[MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2) derives from [TCEval-v1](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval)
and [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus). **MMLU** sources from [hails/mmlu_no_train](https://huggingface.co/datasets/hails/mmlu_no_train).
**MT-Bench** source from [lmsys/mt_bench_human_judgments](https://huggingface.co/datasets/lmsys/mt_bench_human_judgments).
We use the code revised from [EleutherAI/lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate **TMMLU+**, **DRCD**, **Table**, and **MMLU**.
We use the code revised from [fastchat llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) (GPT4 as judge) to evaluate **MT-Bench-tw** and **MT-Bench**.
| Models | |↑ MT-Bench-tw (Score)| TMMLU+ (ACC) | TMMLU+ (ACC) | DRCD (EM) | Table (ACC) | MT-Bench (Score) | MMLU (ACC) | MMLU (ACC) |
|---------------------------------------------------------------------------------------------------------|--------|--------------------|--------------|--------------|-------------|-------------|------------------|-------------|-------------|
| | |TC, Chat |TC, Knowledge |TC, Knowledge |TC, Reasoning|TC, Reasoning|EN, Chat |EN, Knowledge|EN, Knowledge|
| | |0 shot | 0 shot | 5 shot | 3 shot | 0 shot |0 shot | 0 shot | 5 shot |
| [gpt-3.5-turbo](https://openai.com) | |7.1 | 41.76 | | | |7.9 | 70.00 | |
| [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) | 34B |6.9 | 54.87 | | | 36.81 |7.6 | 71.04 | |
| [Qwen-14B-Chat](https://huggingface.co/Qwen/Qwen-14B-Chat) | 14B |6.4 | 48.41 | | | 41.67 |7.2 | 64.91 | |
| [**Breeze-7B-Instruct-v0.1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0.1) | 7B |5.7 | 41.61 | | | 45.83 |7.1 | 63.26 | |
| [**Breeze-7B-Instruct-64k-v0.1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0.1) | 7B |5.5 | 40.99 | | | 36.11 |7.1 | 63.68 | |
| [Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) | 7B |5.4 | 40.02 | | | 33.33 |6.2 | 55.94 | |
| [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) | 6B |5.0 | 44.79 | | | 25.69 |6.0 | 59.45 | |
| [Taiwan-LLM-13B-v2.0-chat](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat) | 13B |5.0 | 29.47 | | | 23.61 |-* | 50.50 | |
| [Taiwan-LLM-7B-v2.1-chat](https://huggingface.co/yentinglin/Taiwan-LLM-7B-v2.1-chat) | 7B |4.2 | 28.08 | | | 31.25 | -* | 42.72 | |
\* Taiwan-LLM models responds to multi-turn questions (English) in Traditional Chinese.
**Category Score of MT-Bench-tw (0 shot)**
| Models | STEM |Extraction|Reasoning| Math | Coding | Roleplay| Writing |Humanities|↑ AVG |
|-----------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| gpt-3.5-turbo | | | | | | | | | |
| Yi-34B-Chat | | | | | | | | | |
| Qwen-14B-Chat | | | | | | | | | |
| **Breeze-7B-Instruct-v0.1** | | | | | | | | | |
| **Breeze-7B-Instruct-64k-v0.1** | | | | | | | | | |
| Qwen-7B-Chat | | | | | | | | | |
| Yi-6B-Chat | | | | | | | | | |
| Taiwan-LLM-13B-v2.0-chat | | | | | | | | | |
| Taiwan-LLM-7B-v2.1-chat | | | | | | | | | |
**Category ACC of TMMLU+ (0 shot)**
| Model | STEM | Social Science | Humanities | Other | ↑ AVG |
|-----------------------------------------------------|--------------|----------------|------------|------------|---------|
| Yi-34B-Chat | 47.65 | 64.25 | 52.73 | 54.91 | 54.87 |
| Qwen-14B-Chat | 43.83 | 55.00 | 48.55 | 46.22 | 48.41 |
| Yi-6B-Chat | 37.80 | 51.74 | 45.36 | 44.25 | 44.79 |
| gpt-3.5-turbo | 41.56 | 46.72 | 36.73 | 42.03 | 41.76 |
| **Breeze-7B-Instruct-v0.1** | 37.41 | 46.81 | 42.06 | 40.16 | 41.61 |
| **Breeze-7B-Instruct-64k-v0.1** | 37.88 | 46.35 | 40.31 | 39.40 | 40.99 |
| Qwen-7B-Chat | 35.44 | 46.22 | 38.35 | 40.06 | 40.02 |
| Taiwan-LLM-13B-v2.0-chat | 27.74 | 33.69 | 27.03 | 29.43 | 29.47 |
| Taiwan-LLM-7B-v2.1-chat | 25.58 | 31.76 | 27.36 | 27.61 | 28.08 |
## Inference Performance
In this test, we use the first 700 characters of the [web article](https://health.udn.com/health/story/5976/7699252?from=udn_ch1005_main_index) as the input and ask the model to write the same article again.
All inferences run on 2 RTX A6000 GPUs (using `vllm`, with a tensor-parallel size of 2).
| Models | ↓ Inference Time (sec)|Estimated Max Input Length (Char)|
|--------------------------------------------------------------------|-------------------|--------------------------|
| Yi-6B | 10.62 | 5.2k |
| **Breeze-7B-Instruct-v0.1** | 10.74 | 11.1k |
| **Breeze-7B-Instruct-64k-v0.1** | 10.74 | 88.8k |
| Qwen-7B | 10.86 | 9.8k |
| Qwen-14B | 18.89 | 9.8k |
| Mistral-7B-v0.1 | 20.48 | 5.1k |
| Taiwan-LLM-7B-v2.1-base | 26.26 | 2.2k |
| Taiwan-LLM-13B-v2.0-base | 36.80 | 2.2k |
| Yi-34B | 43.71 | 4.5k |
## Long-context Performance
TBD
## Examples
TBD
## Use in Transformers
First install direct dependencies:
```
pip install transformers torch accelerate
```
If you want faster inference using flash-attention2, you need to install these dependencies:
```bash
pip install packaging ninja
pip install flash-attn
```
Then load the model in transformers:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained(
model="MediaTek-Research/Breeze-7B-Instruct-v0.1",
device_map="auto",
torch_dtype=torch.bfloat16,
use_flash_attn_2=True # optional
)
```
The structure of the query template follows that of Mistral-7B-Instruct, as shown below.
```txt
<s> SYS_PROMPT [INST] QUERY1 [/INST] RESPONSE1 [INST] QUERY2 [/INST]
```
where `SYS_PROMPT`, `QUERY1`, `RESPONSE1`, and `QUERY2` can be provided by the user.
The suggested default `SYS_PROMPT` is
```txt
You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan.
```
## Citation
```
@article{breeze7b2024,
title={},
author={},
journal={arXiv},
year={2024}
}
```
|