|
--- |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# Model Card for Breeze-7B-Instruct-v0.1 |
|
|
|
Breeze-7B-Instruct-v0.1 is a 7-billion-parameter language model built from Mistral-7B and tailored for Traditional Chinese (TC). |
|
This model expands the TC vocabulary (extra 30k TC tokens) based on the original Mistral-7B to better adapt to TC and improve inference speed, |
|
resulting in a doubling of the original tokenizer's inference speed. |
|
To the best of our knowledge, this is the first work on vocabulary expansion in TC. |
|
This model uses 250GB of TC data for continued pre-training and uses over 1M instances for further supervised fine-tuning. |
|
Breeze-7B-Instruct-v0.1 performs well on both EN and TC benchmarks. |
|
This model outperforms Taiwan-LLM-7B-v2.1-chat, Taiwan-LLM-13B-v2.0-chat, and Yi-6B-Chat on all TC benchmarks |
|
and is comparable with Mistral-7B-Instruct-v0.1 on MMLU and MT-Bench in English. |
|
|
|
*A project by the members (in alphabetical order): Chan-Jan Hsu 許湛然, Chang-Le Liu 劉昶樂, Feng-Ting Liao 廖峰挺, Po-Chun Hsu 許博竣, Yi-Chang Chen 陳宜昌, and the supervisor Da-Shan Shiu 許大山.* |
|
|
|
## Features |
|
|
|
- Expanding the vocabulary dictionary for Traditional Chinese from 32k to 62k vocabulary size |
|
- Multi-turn dialogue (without special handling for harmfulness) |
|
- 8k context length |
|
|
|
## Model Details |
|
- **Finetuned from:** [MediaTek-Research/Breeze-7B-Base-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0.1) |
|
- **Model type:** Causal decoder-only transformer language model |
|
- **Language:** English and Traditional Chinese (zh-tw) |
|
|
|
## Base Model Performance |
|
|
|
| Models | | TMMLU+ (ACC) | DRCD (EM) | Table (ACC) | MMLU (ACC) | |
|
|----------------------------------------------|--------|--------------|-------------|-------------|------------| |
|
| | |TC, Knowledge |TC, Reasoning|TC, Reasoning|EN, Knowledge| |
|
| | | 5 shot | 3 shot | 5 shot | 5 shot | |
|
| [Yi-34B](https://huggingface.co/01-ai/Yi-34B)| 34B | 63.10 | 84.57 | 49.31 | 77.42 | |
|
| [Qwen-14B](https://huggingface.co/01-ai/Qwen/Qwen-14B)| 14B | 51.30 | 16.95 * | 50.69 | 68.83 | |
|
| [Yi-6B](https://huggingface.co/01-ai/Yi-6B) | 6B | 49.63 | 76.61 | 34.72 | 65.35 | |
|
| [Qwen-7B](https://huggingface.co/01-ai/Qwen/Qwen-7B)| 7B | 42.84 | 0.0 * | 39.58 | 61.00 | |
|
| [**Breeze-7B-Base-v0.1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0.1) | 7B | 40.35 | 81.13 | 28.47 | 61.63 | |
|
| [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)| 7B | 36.93 | 79.27 | 27.78 | 64.89 | |
|
|
|
|
|
\* Few-shot learning cannot effectively guide the model to generate the proper answer. |
|
|
|
| Category ACC of TMMLU+ (5 shot) | STEM | Social Science | Humanities | Other | |
|
|-----------------------------------------------------|--------------|----------------|------------|------------| |
|
| Yi-34B | 56.03 | 73.06 | 61.12 | 62.19 | |
|
| Qwen-14B | 46.51 | 58.20 | 51.12 | 49.38 | |
|
| Yi-6B | 41.14 | 57.77 | 50.22 | 49.39 | |
|
| Qwen-7B | 28.25 | 47.80 | 43.14 | 42.17 | |
|
| **Breeze-7B-Base-v0.1** | 35.74 | 46.08 | 40.29 | 39.27 | |
|
| Mistral-7B-v0.1 | 33.01 | 42.23 | 35.86 | 37.63 | |
|
|
|
|
|
## Chat Model Performance |
|
|
|
| Models | | TMMLU+ (ACC) | TMMLU+ (ACC) | DRCD (EM) | Table (ACC) | MT-Bench-tw (Score) | MMLU (ACC) | MMLU (ACC) | MT-Bench (Score) | |
|
|--------------------------------------------|--------|--------------|--------------|-----------|-------------|--------|------------|------------|------------------| |
|
| | |TC, Knowledge |TC, Knowledge |TC, Reasoning|TC, Reasoning|TC, Chat |EN, Knowledge|EN, Knowledge|EN, Chat | |
|
| | | 0 shot | 5 shot | 3 shot | 0 shot | 0 shot | 0 shot | 5 shot | 0 shot | |
|
| [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) | 34B | 54.87 | | | 36.81 | 6.9 | 71.04 | | 7.6 | |
|
| [Qwen-14B-Chat](https://huggingface.co/Qwen/Qwen-14B-Chat) | 14B | 48.41 | | | 41.67 | 6.4 | 64.91 | | 7.2 | |
|
| [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) | 6B | 44.79 | | | 25.69 | 5.0 | 59.45 | | 6.0 | |
|
| [gpt-3.5-turbo](https://openai.com) | | 41.76 | | | | 7.1 | 70.00 | | 7.9 | |
|
| [**Breeze-7B-Instruct-v0.1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0.1) | 7B | 41.61 | | | 45.83 | 5.7 | 63.26 | | 7.1 | |
|
| [**Breeze-7B-Instruct-64k-v0.1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0.1) | 7B | 40.99 | | | 36.11 | 5.5 | 63.68 | | 7.1 | |
|
| [Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) | 7B | 40.02 | | | 33.33 | 5.4 | 55.94 | | 6.2 | |
|
| [Taiwan-LLM-13B-v2.0-chat](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat) | 13B | 29.47 | | | 23.61 | 5.0 | 50.50 | | -* | |
|
| [Taiwan-LLM-7B-v2.1-chat](https://huggingface.co/yentinglin/Taiwan-LLM-7B-v2.1-chat) | 7B | 28.08 | | | 31.25 | 4.2 | 42.72 | | -* | |
|
|
|
|
|
\* Taiwan-LLM models responds to multi-turn questions (English) in Traditional Chinese. |
|
|
|
| Category ACC of TMMLU+ (0 shot) | STEM | Social Science | Humanities | Other | |
|
|-----------------------------------------------------|--------------|----------------|------------|------------| |
|
| Yi-34B-Chat | 47.65 | 64.25 | 52.73 | 54.91 | |
|
| Qwen-14B-Chat | 43.83 | 55.00 | 48.55 | 46.22 | |
|
| Yi-6B-Chat | 37.80 | 51.74 | 45.36 | 44.25 | |
|
| gpt-3.5-turbo | 41.56 | 46.72 | 36.73 | 42.03 | |
|
| **Breeze-7B-Instruct-v0.1** | 37.41 | 46.81 | 42.06 | 40.16 | |
|
| **Breeze-7B-Instruct-64k-v0.1** | 37.88 | 46.35 | 40.31 | 39.40 | |
|
| Qwen-7B-Chat | 35.44 | 46.22 | 38.35 | 40.06 | |
|
| Taiwan-LLM-13B-v2.0-chat | 27.74 | 33.69 | 27.03 | 29.43 | |
|
| Taiwan-LLM-7B-v2.1-chat | 25.58 | 31.76 | 27.36 | 27.61 | |
|
|
|
|
|
## Inference Performance |
|
In this test, we use the first 700 characters a [web article](https://health.udn.com/health/story/5976/7699252?from=udn_ch1005_main_index) as input and ask the model to rewrite the article. |
|
All models were inferenced with `vllm` on 2 A6000 (TP=2 ). |
|
|
|
| Models | Inference Time (sec)|Estimated Max Input Length (TC Char)| |
|
|--------------------------------------------------------------------|-------------------|--------------------------| |
|
| Yi-6B | 10.62 | 5.2k | |
|
| **Breeze-7B-Instruct-v0.1** | 10.74 | 11.1k | |
|
| **Breeze-7B-Instruct-64k-v0.1** | 10.74 | 88.8k | |
|
| Qwen-7B | 10.86 | 9.8k | |
|
| Qwen-14B | 18.89 | 9.8k | |
|
| Mistral-7B-v0.1 | 20.48 | 5.1k | |
|
| Taiwan-LLM-7B-v2.1-base | 26.26 | 2.2k | |
|
| Taiwan-LLM-13B-v2.0-base | 36.8 | 2.2k | |
|
| Yi-34B | 43.71 | 4.5k | |
|
|
|
## Examples |
|
|
|
|
|
|
|
## Use in Transformers |
|
|
|
First install direct dependencies: |
|
``` |
|
pip install transformers torch accelerate |
|
``` |
|
If you want faster inference using flash-attention2, you need to install these dependencies: |
|
```bash |
|
pip install packaging ninja |
|
pip install flash-attn |
|
``` |
|
Then load the model in transformers: |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model="MediaTek-Research/Breeze-7B-Instruct-v0.1", |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
use_flash_attn_2=True # optional |
|
) |
|
``` |
|
|
|
The structure of the query template follows that of Mistral-7B-Instruct, as shown below. |
|
```txt |
|
<s> SYS_PROMPT [INST] QUERY1 [/INST] RESPONSE1 [INST] QUERY2 [/INST] |
|
``` |
|
where `SYS_PROMPT`, `QUERY1`, `RESPONSE1`, and `QUERY2` can be provided by the user. |
|
|
|
The suggested default `SYS_PROMPT` is |
|
```txt |
|
You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan. |
|
``` |
|
|