--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - text-classification - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: results results: [] --- # results This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4186 - Accuracy: 0.9028 - Precision: 0.7440 - Recall: 0.6525 - F1: 0.6953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.238 | 1.0 | 347 | 0.2861 | 0.8913 | 0.7179 | 0.5932 | 0.6497 | | 0.2052 | 2.0 | 694 | 0.2654 | 0.9057 | 0.7966 | 0.5975 | 0.6828 | | 0.024 | 3.0 | 1041 | 0.4186 | 0.9028 | 0.7440 | 0.6525 | 0.6953 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Tokenizers 0.19.1