File size: 1,843 Bytes
bf5ce8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df1bde4
 
bf5ce8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df1bde4
 
 
 
 
 
bf5ce8d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: cc-by-nc-4.0
base_model: facebook/wav2vec2-base-10k-voxpopuli-ft-de
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v2-base-10k-voxpopuli-ft-de_lr1e-4_at0.8_da1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v2-base-10k-voxpopuli-ft-de_lr1e-4_at0.8_da1

This model is a fine-tuned version of [facebook/wav2vec2-base-10k-voxpopuli-ft-de](https://huggingface.co/facebook/wav2vec2-base-10k-voxpopuli-ft-de) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8259
- Wer: 0.1632

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 60
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.8086        | 5.43  | 250  | 0.8872          | 0.2456 |
| 0.1358        | 10.87 | 500  | 1.1126          | 0.1858 |
| 0.0916        | 16.3  | 750  | 1.5579          | 0.1991 |
| 0.0716        | 21.74 | 1000 | 1.2674          | 0.1833 |
| 0.0584        | 27.17 | 1250 | 1.6728          | 0.1768 |
| 0.0464        | 32.61 | 1500 | 1.8259          | 0.1632 |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.14.6
- Tokenizers 0.14.1