--- language: - ru - en license: mit library_name: peft tags: - python - code datasets: - zelkame/ru-stackoverflow-py - MexIvanov/Vezora-Tested-22k-Python-Alpaca-ru - MexIvanov/CodeExercise-Python-27k-ru base_model: HuggingFaceH4/zephyr-7b-beta pipeline_tag: conversational model-index: - name: zephyr-python-ru results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 56.14 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MexIvanov/zephyr-python-ru name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.03 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MexIvanov/zephyr-python-ru name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 60.18 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MexIvanov/zephyr-python-ru name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 52.8 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MexIvanov/zephyr-python-ru name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 76.8 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MexIvanov/zephyr-python-ru name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 32.52 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MexIvanov/zephyr-python-ru name: Open LLM Leaderboard --- # Model Card for Model ID ## Model Details ### Model Description - **Developed by:** C.B. Pronin, A.V. Volosova, A.V. Ostroukh, Yu.N. Strogov, V.V. Kurbatov, A.S. Umarova. - **Model type:** A LoRA (Peft) adapter model trained on a mix of publicly available data and machine-translated synthetic python coding datasets. - **Language(s) (NLP):** Russian, English, Python - **License:** MIT - **Finetuned from model:** HuggingFaceH4/zephyr-7b-beta ### Model Sources - **Repository:** Comming soon... - **Paper:** Comming soon... ## Uses An experimental finetune of Zephyr-7b-beta, aimed at improving coding performance and support for coding-related instructions written in Russian language. ### Direct Use Instruction-based coding in Python, based of instructions written in natural language (English or Russian) Prompt template - Zephyr: ``` <|system|> <|user|> {prompt} <|assistant|> ``` ## Bias, Risks, and Limitations This adapter model is intended (but not limited) for research usage only. It was trained on a code based instruction set and it does not have any moderation mechanisms. Use at your own risk, we are not responsible for any usage or output of this model. Quote from Zephyr (base-model) repository: "Zephyr-7B-β has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition of the corpus was used to train the base model (mistralai/Mistral-7B-v0.1), however it is likely to have included a mix of Web data and technical sources like books and code. See the Falcon 180B model card for an example of this." ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.2 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.2 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MexIvanov__zephyr-python-ru) | Metric |Value| |---------------------------------|----:| |Avg. |60.08| |AI2 Reasoning Challenge (25-Shot)|56.14| |HellaSwag (10-Shot) |82.03| |MMLU (5-Shot) |60.18| |TruthfulQA (0-shot) |52.80| |Winogrande (5-shot) |76.80| |GSM8k (5-shot) |32.52|