update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
model-index:
|
7 |
+
- name: plbart-base-finetuned-detection-bad-good-ut
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# plbart-base-finetuned-detection-bad-good-ut
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [uclanlp/plbart-base](https://huggingface.co/uclanlp/plbart-base) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.3264
|
19 |
+
- Accuracy: 0.826
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 5e-06
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 2
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
51 |
+
| 0.6958 | 0.09 | 100 | 0.7097 | 0.532 |
|
52 |
+
| 0.6358 | 0.18 | 200 | 0.4519 | 0.759 |
|
53 |
+
| 0.4083 | 0.27 | 300 | 0.3793 | 0.789 |
|
54 |
+
| 0.3863 | 0.36 | 400 | 0.3827 | 0.797 |
|
55 |
+
| 0.3581 | 0.44 | 500 | 0.3392 | 0.81 |
|
56 |
+
| 0.3395 | 0.53 | 600 | 0.3546 | 0.8 |
|
57 |
+
| 0.3336 | 0.62 | 700 | 0.3297 | 0.827 |
|
58 |
+
| 0.353 | 0.71 | 800 | 0.3645 | 0.803 |
|
59 |
+
| 0.3628 | 0.8 | 900 | 0.3400 | 0.824 |
|
60 |
+
| 0.3227 | 0.89 | 1000 | 0.3264 | 0.826 |
|
61 |
+
| 0.3521 | 0.98 | 1100 | 0.3227 | 0.823 |
|
62 |
+
| 0.3556 | 1.07 | 1200 | 0.3211 | 0.821 |
|
63 |
+
| 0.3243 | 1.16 | 1300 | 0.3296 | 0.812 |
|
64 |
+
| 0.3201 | 1.24 | 1400 | 0.3395 | 0.832 |
|
65 |
+
| 0.3127 | 1.33 | 1500 | 0.3365 | 0.83 |
|
66 |
+
| 0.3267 | 1.42 | 1600 | 0.3376 | 0.828 |
|
67 |
+
| 0.3046 | 1.51 | 1700 | 0.3316 | 0.82 |
|
68 |
+
| 0.2903 | 1.6 | 1800 | 0.3418 | 0.835 |
|
69 |
+
| 0.3062 | 1.69 | 1900 | 0.3300 | 0.84 |
|
70 |
+
| 0.3034 | 1.78 | 2000 | 0.3327 | 0.838 |
|
71 |
+
| 0.2828 | 1.87 | 2100 | 0.3342 | 0.825 |
|
72 |
+
| 0.3119 | 1.96 | 2200 | 0.3319 | 0.833 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.26.1
|
78 |
+
- Pytorch 1.13.1+cu116
|
79 |
+
- Datasets 2.10.0
|
80 |
+
- Tokenizers 0.13.2
|