Minata commited on
Commit
2b9dc66
1 Parent(s): 00f6cd9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ model-index:
7
+ - name: plbart-base-finetuned-detection-bad-good-ut
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # plbart-base-finetuned-detection-bad-good-ut
15
+
16
+ This model is a fine-tuned version of [uclanlp/plbart-base](https://huggingface.co/uclanlp/plbart-base) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.3264
19
+ - Accuracy: 0.826
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-06
39
+ - train_batch_size: 8
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
+ - lr_scheduler_type: linear
44
+ - num_epochs: 2
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
50
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
51
+ | 0.6958 | 0.09 | 100 | 0.7097 | 0.532 |
52
+ | 0.6358 | 0.18 | 200 | 0.4519 | 0.759 |
53
+ | 0.4083 | 0.27 | 300 | 0.3793 | 0.789 |
54
+ | 0.3863 | 0.36 | 400 | 0.3827 | 0.797 |
55
+ | 0.3581 | 0.44 | 500 | 0.3392 | 0.81 |
56
+ | 0.3395 | 0.53 | 600 | 0.3546 | 0.8 |
57
+ | 0.3336 | 0.62 | 700 | 0.3297 | 0.827 |
58
+ | 0.353 | 0.71 | 800 | 0.3645 | 0.803 |
59
+ | 0.3628 | 0.8 | 900 | 0.3400 | 0.824 |
60
+ | 0.3227 | 0.89 | 1000 | 0.3264 | 0.826 |
61
+ | 0.3521 | 0.98 | 1100 | 0.3227 | 0.823 |
62
+ | 0.3556 | 1.07 | 1200 | 0.3211 | 0.821 |
63
+ | 0.3243 | 1.16 | 1300 | 0.3296 | 0.812 |
64
+ | 0.3201 | 1.24 | 1400 | 0.3395 | 0.832 |
65
+ | 0.3127 | 1.33 | 1500 | 0.3365 | 0.83 |
66
+ | 0.3267 | 1.42 | 1600 | 0.3376 | 0.828 |
67
+ | 0.3046 | 1.51 | 1700 | 0.3316 | 0.82 |
68
+ | 0.2903 | 1.6 | 1800 | 0.3418 | 0.835 |
69
+ | 0.3062 | 1.69 | 1900 | 0.3300 | 0.84 |
70
+ | 0.3034 | 1.78 | 2000 | 0.3327 | 0.838 |
71
+ | 0.2828 | 1.87 | 2100 | 0.3342 | 0.825 |
72
+ | 0.3119 | 1.96 | 2200 | 0.3319 | 0.833 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.26.1
78
+ - Pytorch 1.13.1+cu116
79
+ - Datasets 2.10.0
80
+ - Tokenizers 0.13.2