MiniMax-Text-01 / main.py
MiniMax-AI's picture
Initial Commit
e1640d7
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, QuantoConfig, GenerationConfig
import torch
import argparse
"""
usage:
export SAFETENSORS_FAST_GPU=1
python main.py --quant_type int8 --world_size 8 --model_id <model_path>
"""
def generate_quanto_config(hf_config: AutoConfig, quant_type: str):
QUANT_TYPE_MAP = {
"default": None,
"int8": QuantoConfig(
weights="int8",
modules_to_not_convert=[
"lm_head",
"embed_tokens",
] + [f"model.layers.{i}.coefficient" for i in range(hf_config.num_hidden_layers)]
+ [f"model.layers.{i}.block_sparse_moe.gate" for i in range(hf_config.num_hidden_layers)]
),
}
return QUANT_TYPE_MAP[quant_type]
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--quant_type", type=str, default="default", choices=["default", "int8"])
parser.add_argument("--model_id", type=str, required=True)
parser.add_argument("--world_size", type=int, required=True)
return parser.parse_args()
def check_params(args, hf_config: AutoConfig):
if args.quant_type == "int8":
assert args.world_size >= 8, "int8 weight-only quantization requires at least 8 GPUs"
assert hf_config.num_hidden_layers % args.world_size == 0, f"num_hidden_layers({hf_config.num_hidden_layers}) must be divisible by world_size({args.world_size})"
@torch.no_grad()
def main():
args = parse_args()
print("\n=============== Argument ===============")
for key in vars(args):
print(f"{key}: {vars(args)[key]}")
print("========================================")
model_id = args.model_id
hf_config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
check_params(args, hf_config)
quantization_config = generate_quanto_config(hf_config, args.quant_type)
device_map = {
'model.embed_tokens': 'cuda:0',
'model.norm': f'cuda:{args.world_size - 1}',
'lm_head': f'cuda:{args.world_size - 1}'
}
layers_per_device = hf_config.num_hidden_layers // args.world_size
for i in range(args.world_size):
for j in range(layers_per_device):
device_map[f'model.layers.{i * layers_per_device + j}'] = f'cuda:{i}'
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "Hello!"
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by Minimax based on MiniMax-Text-01 model."}]},
{"role": "user", "content": [{"type": "text", "text": prompt}]},
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer(text, return_tensors="pt").to("cuda")
quantized_model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="bfloat16",
device_map=device_map,
quantization_config=quantization_config,
trust_remote_code=True,
offload_buffers=True,
)
generation_config = GenerationConfig(
max_new_tokens=20,
eos_token_id=200020,
use_cache=True,
)
generated_ids = quantized_model.generate(**model_inputs, generation_config=generation_config)
print(f"generated_ids: {generated_ids}")
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
if __name__ == "__main__":
main()