import transformers from transformers import AutoModelForCausalLM, AutoProcessor, AutoConfig, QuantoConfig, GenerationConfig import torch import safetensors import argparse import os import json from PIL import Image """ usage: export SAFETENSORS_FAST_GPU=1 python main.py --quant_type int8 --world_size 8 --model_id --image_path """ def generate_quanto_config(hf_config: AutoConfig, quant_type: str): QUANT_TYPE_MAP = { "default": None, "int8": QuantoConfig( weights="int8", modules_to_not_convert=[ "vision_tower", "image_newline", "multi_modal_projector", "lm_head", "embed_tokens", ] + [f"model.layers.{i}.coefficient" for i in range(hf_config.text_config.num_hidden_layers)] + [f"model.layers.{i}.block_sparse_moe.gate" for i in range(hf_config.text_config.num_hidden_layers)] ), } return QUANT_TYPE_MAP[quant_type] def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--quant_type", type=str, default="default", choices=["default", "int8"]) parser.add_argument("--model_id", type=str, required=True) parser.add_argument("--world_size", type=int, required=True) parser.add_argument("--image_path", type=str, required=True) return parser.parse_args() def check_params(args, hf_config: AutoConfig): if args.quant_type == "int8": assert args.world_size >= 8, "int8 weight-only quantization requires at least 8 GPUs" assert hf_config.text_config.num_hidden_layers % args.world_size == 0, f"num_hidden_layers({hf_config.text_config.num_hidden_layers}) must be divisible by world_size({args.world_size})" @torch.no_grad() def main(): args = parse_args() print("\n=============== Argument ===============") for key in vars(args): print(f"{key}: {vars(args)[key]}") print("========================================") model_id = args.model_id hf_config = AutoConfig.from_pretrained(model_id, trust_remote_code=True) processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) quantization_config = generate_quanto_config(hf_config, args.quant_type) check_params(args, hf_config) model_safetensors_index_path = os.path.join(model_id, "model.safetensors.index.json") with open(model_safetensors_index_path, "r") as f: model_safetensors_index = json.load(f) weight_map = model_safetensors_index['weight_map'] vision_map = {} for key, value in weight_map.items(): if 'vision_tower' in key or 'image_newline' in key or 'multi_modal_projector' in key: new_key = key.replace('.weight','').replace('.bias','') if new_key not in vision_map: vision_map[new_key] = value device_map = { 'language_model.model.embed_tokens': 'cuda:0', 'language_model.model.norm': f'cuda:{args.world_size - 1}', 'language_model.lm_head': f'cuda:{args.world_size - 1}' } for key, value in vision_map.items(): device_map[key] = f'cuda:0' device_map['vision_tower.vision_model.post_layernorm'] = f'cuda:0' layers_per_device = hf_config.text_config.num_hidden_layers // args.world_size for i in range(args.world_size): for j in range(layers_per_device): device_map[f'language_model.model.layers.{i * layers_per_device + j}'] = f'cuda:{i}' messages = [ {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by Minimax based on MiniMax-VL-01 model."}]}, {"role": "user", "content": [{"type": "image", "image": "placeholder"},{"type": "text", "text": "Describe this image."}]}, ] prompt = processor.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) print(f"prompt: \n{prompt}") raw_image = Image.open(args.image_path) model_inputs = processor(images=[raw_image], text=prompt, return_tensors='pt').to('cuda').to(torch.bfloat16) quantized_model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype="bfloat16", device_map=device_map, quantization_config=quantization_config, trust_remote_code=True, offload_buffers=True, ) generation_config = GenerationConfig( max_new_tokens=100, eos_token_id=200020, use_cache=True, ) generated_ids = quantized_model.generate(**model_inputs, generation_config=generation_config) print(f"generated_ids: {generated_ids}") generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = processor.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) # The image depicts a single, whole apple with a rich, red color. The apple appears to be fresh, with a smooth, glossy skin that reflects light, indicating its juiciness. The surface of the apple is dotted with small, light-colored def query_safetensors(path): safetensor = safetensors.torch.load_file(path) for key in safetensor.keys(): print(key, safetensor[key].shape) if __name__ == "__main__": main()