--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: mtl-xlmr-base-viwiki-v3 results: [] --- # mtl-xlmr-base-viwiki-v3 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.8769 | 1.0 | 960 | 0.7713 | | 0.5802 | 2.0 | 1920 | 0.6602 | | 0.7036 | 3.0 | 2880 | 0.6153 | | 0.4554 | 4.0 | 3840 | 0.6017 | | 0.3767 | 5.0 | 4800 | 0.6026 | | 0.3122 | 6.0 | 5760 | 0.6543 | | 0.2951 | 7.0 | 6720 | 0.6342 | | 0.2424 | 8.0 | 7680 | 0.6403 | | 0.3225 | 9.0 | 8640 | 0.6522 | | 0.2981 | 10.0 | 9600 | 0.6780 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.2.1 - Datasets 2.21.0 - Tokenizers 0.19.1