File size: 1,941 Bytes
12b011c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: transformers
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceTB/Magpie-Pro-300K-Filtered-H4
- HuggingFaceTB/self-oss-instruct-sc2-H4
- HuggingFaceTB/OpenHermes-2.5-H4
- HuggingFaceTB/everyday-conversations-llama3.1-2k
- HuggingFaceTB/instruct-data-basics-smollm-H4
model-index:
- name: monet-vd-1.4B-100BT-chat-hf
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# monet-vd-1.4B-100BT-chat-hf
This model is a fine-tuned version of [monet-vd-1.4B-100BT-hf](https://huggingface.co/MonetLLM/monet-vd-1.4B-100BT-hf) on the HuggingFaceTB/Magpie-Pro-300K-Filtered-H4, the HuggingFaceTB/self-oss-instruct-sc2-H4, the HuggingFaceTB/OpenHermes-2.5-H4, the HuggingFaceTB/everyday-conversations-llama3.1-2k and the HuggingFaceTB/instruct-data-basics-smollm-H4 datasets.
It achieves the following results on the evaluation set:
- Loss: 1.1664
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.8032 | 0.9988 | 502 | 1.1664 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1
- Datasets 2.21.0
- Tokenizers 0.19.1
|