--- library_name: transformers tags: - alignment-handbook - generated_from_trainer datasets: - HuggingFaceTB/Magpie-Pro-300K-Filtered-H4 - HuggingFaceTB/self-oss-instruct-sc2-H4 - HuggingFaceTB/OpenHermes-2.5-H4 - HuggingFaceTB/everyday-conversations-llama3.1-2k - HuggingFaceTB/instruct-data-basics-smollm-H4 model-index: - name: monet-vd-1.4B-100BT-chat-hf results: [] --- # monet-vd-1.4B-100BT-chat-hf This model is a fine-tuned version of [monet-vd-1.4B-100BT-hf](https://huggingface.co/MonetLLM/monet-vd-1.4B-100BT-hf) on the HuggingFaceTB/Magpie-Pro-300K-Filtered-H4, the HuggingFaceTB/self-oss-instruct-sc2-H4, the HuggingFaceTB/OpenHermes-2.5-H4, the HuggingFaceTB/everyday-conversations-llama3.1-2k and the HuggingFaceTB/instruct-data-basics-smollm-H4 datasets. It achieves the following results on the evaluation set: - Loss: 1.1664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8032 | 0.9988 | 502 | 1.1664 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1 - Datasets 2.21.0 - Tokenizers 0.19.1