--- base_model: microsoft/layoutlm-base-uncased tags: - generated_from_trainer model-index: - name: layoutlm-funsd results: [] --- # layoutlm-funsd This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0668 - Number-a: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} - Number-q: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} - Overall Precision: 0.0 - Overall Recall: 0.0 - Overall F1: 0.0 - Overall Accuracy: 0.9848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Number-a | Number-q | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 1.1627 | 1.0 | 1 | 1.1422 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.2713 | | 1.1655 | 2.0 | 2 | 1.1422 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.2713 | | 1.1695 | 3.0 | 3 | 1.1422 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.2713 | | 1.1661 | 4.0 | 4 | 0.8227 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.8093 | | 0.8478 | 5.0 | 5 | 0.5718 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9744 | | 0.5975 | 6.0 | 6 | 0.3821 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 | | 0.4052 | 7.0 | 7 | 0.2537 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 | | 0.2676 | 8.0 | 8 | 0.1673 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 | | 0.1775 | 9.0 | 9 | 0.1173 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 | | 0.1266 | 10.0 | 10 | 0.0942 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 | | 0.1017 | 11.0 | 11 | 0.0842 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 | | 0.0891 | 12.0 | 12 | 0.0786 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 | | 0.0845 | 13.0 | 13 | 0.0741 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 | | 0.0788 | 14.0 | 14 | 0.0702 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 | | 0.0763 | 15.0 | 15 | 0.0668 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0