|
import argparse
|
|
import os
|
|
import time
|
|
|
|
import accelerate
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
import torchaudio.functional
|
|
import torchvision.io
|
|
from PIL import Image
|
|
from diffusers import AutoencoderKL, DDIMScheduler
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
from insightface.app import FaceAnalysis
|
|
from omegaconf import OmegaConf
|
|
from transformers import Wav2Vec2Model, Wav2Vec2Processor
|
|
|
|
from modules import UNet2DConditionModel, UNet3DConditionModel, VKpsGuider, AudioProjection
|
|
from pipelines import VExpressPipeline
|
|
from pipelines.utils import draw_kps_image, save_video
|
|
from pipelines.utils import retarget_kps
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('--unet_config_path', type=str, default='./model_ckpts/stable-diffusion-v1-5/unet/config.json')
|
|
parser.add_argument('--vae_path', type=str, default='./model_ckpts/sd-vae-ft-mse/')
|
|
parser.add_argument('--audio_encoder_path', type=str, default='./model_ckpts/wav2vec2-base-960h/')
|
|
parser.add_argument('--insightface_model_path', type=str, default='./model_ckpts/insightface_models/')
|
|
|
|
parser.add_argument('--denoising_unet_path', type=str, default='./model_ckpts/v-express/denoising_unet.bin')
|
|
parser.add_argument('--reference_net_path', type=str, default='./model_ckpts/v-express/reference_net.bin')
|
|
parser.add_argument('--v_kps_guider_path', type=str, default='./model_ckpts/v-express/v_kps_guider.bin')
|
|
parser.add_argument('--audio_projection_path', type=str, default='./model_ckpts/v-express/audio_projection.bin')
|
|
parser.add_argument('--motion_module_path', type=str, default='./model_ckpts/v-express/motion_module.bin')
|
|
|
|
parser.add_argument('--retarget_strategy', type=str, default='fix_face',
|
|
help='{fix_face, no_retarget, offset_retarget, naive_retarget}')
|
|
|
|
parser.add_argument('--dtype', type=str, default='fp16')
|
|
parser.add_argument('--device', type=str, default='cuda')
|
|
parser.add_argument('--gpu_id', type=int, default=0)
|
|
parser.add_argument('--do_multi_devices_inference', action='store_true')
|
|
parser.add_argument('--save_gpu_memory', action='store_true')
|
|
|
|
parser.add_argument('--num_pad_audio_frames', type=int, default=2)
|
|
parser.add_argument('--standard_audio_sampling_rate', type=int, default=16000)
|
|
|
|
parser.add_argument('--reference_image_path', type=str, default='./test_samples/emo/talk_emotion/ref.jpg')
|
|
parser.add_argument('--audio_path', type=str, default='./test_samples/emo/talk_emotion/aud.mp3')
|
|
parser.add_argument('--kps_path', type=str, default='./test_samples/emo/talk_emotion/kps.pth')
|
|
parser.add_argument('--output_path', type=str, default='./output/emo/talk_emotion.mp4')
|
|
|
|
parser.add_argument('--image_width', type=int, default=512)
|
|
parser.add_argument('--image_height', type=int, default=512)
|
|
parser.add_argument('--fps', type=float, default=30.0)
|
|
parser.add_argument('--seed', type=int, default=42)
|
|
parser.add_argument('--num_inference_steps', type=int, default=25)
|
|
parser.add_argument('--guidance_scale', type=float, default=3.5)
|
|
parser.add_argument('--context_frames', type=int, default=12)
|
|
parser.add_argument('--context_overlap', type=int, default=4)
|
|
parser.add_argument('--reference_attention_weight', default=0.95, type=float)
|
|
parser.add_argument('--audio_attention_weight', default=3., type=float)
|
|
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
def load_reference_net(unet_config_path, reference_net_path, dtype, device):
|
|
reference_net = UNet2DConditionModel.from_config(unet_config_path).to(dtype=dtype, device=device)
|
|
reference_net.load_state_dict(torch.load(reference_net_path, map_location="cpu"), strict=False)
|
|
print(f'Loaded weights of Reference Net from {reference_net_path}.')
|
|
return reference_net
|
|
|
|
|
|
def load_denoising_unet(inf_config_path, unet_config_path, denoising_unet_path, motion_module_path, dtype, device):
|
|
inference_config = OmegaConf.load(inf_config_path)
|
|
denoising_unet = UNet3DConditionModel.from_config_2d(
|
|
unet_config_path,
|
|
unet_additional_kwargs=inference_config.unet_additional_kwargs,
|
|
).to(dtype=dtype, device=device)
|
|
denoising_unet.load_state_dict(torch.load(denoising_unet_path, map_location="cpu"), strict=False)
|
|
print(f'Loaded weights of Denoising U-Net from {denoising_unet_path}.')
|
|
|
|
denoising_unet.load_state_dict(torch.load(motion_module_path, map_location="cpu"), strict=False)
|
|
print(f'Loaded weights of Denoising U-Net Motion Module from {motion_module_path}.')
|
|
|
|
return denoising_unet
|
|
|
|
|
|
def load_v_kps_guider(v_kps_guider_path, dtype, device):
|
|
v_kps_guider = VKpsGuider(320, block_out_channels=(16, 32, 96, 256)).to(dtype=dtype, device=device)
|
|
v_kps_guider.load_state_dict(torch.load(v_kps_guider_path, map_location="cpu"))
|
|
print(f'Loaded weights of V-Kps Guider from {v_kps_guider_path}.')
|
|
return v_kps_guider
|
|
|
|
|
|
def load_audio_projection(
|
|
audio_projection_path,
|
|
dtype,
|
|
device,
|
|
inp_dim: int,
|
|
mid_dim: int,
|
|
out_dim: int,
|
|
inp_seq_len: int,
|
|
out_seq_len: int,
|
|
):
|
|
audio_projection = AudioProjection(
|
|
dim=mid_dim,
|
|
depth=4,
|
|
dim_head=64,
|
|
heads=12,
|
|
num_queries=out_seq_len,
|
|
embedding_dim=inp_dim,
|
|
output_dim=out_dim,
|
|
ff_mult=4,
|
|
max_seq_len=inp_seq_len,
|
|
).to(dtype=dtype, device=device)
|
|
audio_projection.load_state_dict(torch.load(audio_projection_path, map_location='cpu'))
|
|
print(f'Loaded weights of Audio Projection from {audio_projection_path}.')
|
|
return audio_projection
|
|
|
|
|
|
def get_scheduler(inference_config_path):
|
|
inference_config = OmegaConf.load(inference_config_path)
|
|
scheduler_kwargs = OmegaConf.to_container(inference_config.noise_scheduler_kwargs)
|
|
scheduler = DDIMScheduler(**scheduler_kwargs)
|
|
return scheduler
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
start_time = time.time()
|
|
|
|
if not args.do_multi_devices_inference:
|
|
|
|
accelerator = None
|
|
device = torch.device(f'{args.device}:{args.gpu_id}' if args.device == 'cuda' else args.device)
|
|
else:
|
|
accelerator = accelerate.Accelerator()
|
|
device = torch.device(f'cuda:{accelerator.process_index}')
|
|
dtype = torch.float16 if args.dtype == 'fp16' else torch.float32
|
|
|
|
vae_path = args.vae_path
|
|
audio_encoder_path = args.audio_encoder_path
|
|
|
|
vae = AutoencoderKL.from_pretrained(vae_path).to(dtype=dtype, device=device)
|
|
audio_encoder = Wav2Vec2Model.from_pretrained(audio_encoder_path).to(dtype=dtype, device=device)
|
|
audio_processor = Wav2Vec2Processor.from_pretrained(audio_encoder_path)
|
|
|
|
unet_config_path = args.unet_config_path
|
|
reference_net_path = args.reference_net_path
|
|
denoising_unet_path = args.denoising_unet_path
|
|
v_kps_guider_path = args.v_kps_guider_path
|
|
audio_projection_path = args.audio_projection_path
|
|
motion_module_path = args.motion_module_path
|
|
|
|
inference_config_path = './inference_v2.yaml'
|
|
scheduler = get_scheduler(inference_config_path)
|
|
reference_net = load_reference_net(unet_config_path, reference_net_path, dtype, device)
|
|
denoising_unet = load_denoising_unet(
|
|
inference_config_path, unet_config_path, denoising_unet_path, motion_module_path,
|
|
dtype, device
|
|
)
|
|
v_kps_guider = load_v_kps_guider(v_kps_guider_path, dtype, device)
|
|
audio_projection = load_audio_projection(
|
|
audio_projection_path,
|
|
dtype,
|
|
device,
|
|
inp_dim=denoising_unet.config.cross_attention_dim,
|
|
mid_dim=denoising_unet.config.cross_attention_dim,
|
|
out_dim=denoising_unet.config.cross_attention_dim,
|
|
inp_seq_len=2 * (2 * args.num_pad_audio_frames + 1),
|
|
out_seq_len=2 * args.num_pad_audio_frames + 1,
|
|
)
|
|
|
|
if is_xformers_available():
|
|
reference_net.enable_xformers_memory_efficient_attention()
|
|
denoising_unet.enable_xformers_memory_efficient_attention()
|
|
else:
|
|
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
|
|
|
generator = torch.manual_seed(args.seed)
|
|
pipeline = VExpressPipeline(
|
|
vae=vae,
|
|
reference_net=reference_net,
|
|
denoising_unet=denoising_unet,
|
|
v_kps_guider=v_kps_guider,
|
|
audio_processor=audio_processor,
|
|
audio_encoder=audio_encoder,
|
|
audio_projection=audio_projection,
|
|
scheduler=scheduler,
|
|
).to(dtype=dtype, device=device)
|
|
|
|
app = FaceAnalysis(
|
|
providers=['CUDAExecutionProvider' if args.device == 'cuda' else 'CPUExecutionProvider'],
|
|
provider_options=[{'device_id': args.gpu_id}] if args.device == 'cuda' else [],
|
|
root=args.insightface_model_path,
|
|
)
|
|
app.prepare(ctx_id=0, det_size=(args.image_height, args.image_width))
|
|
|
|
reference_image = Image.open(args.reference_image_path).convert('RGB')
|
|
reference_image = reference_image.resize((args.image_height, args.image_width))
|
|
|
|
reference_image_for_kps = cv2.imread(args.reference_image_path)
|
|
reference_image_for_kps = cv2.resize(reference_image_for_kps, (args.image_width, args.image_height))
|
|
reference_kps = app.get(reference_image_for_kps)[0].kps[:3]
|
|
if args.save_gpu_memory:
|
|
del app
|
|
torch.cuda.empty_cache()
|
|
|
|
_, audio_waveform, meta_info = torchvision.io.read_video(os.path.join(os.path.dirname(args.audio_path), os.path.basename(args.audio_path)), pts_unit='sec')
|
|
audio_sampling_rate = meta_info['audio_fps']
|
|
print(f'Length of audio is {audio_waveform.shape[1]} with the sampling rate of {audio_sampling_rate}.')
|
|
if audio_sampling_rate != args.standard_audio_sampling_rate:
|
|
audio_waveform = torchaudio.functional.resample(
|
|
audio_waveform,
|
|
orig_freq=audio_sampling_rate,
|
|
new_freq=args.standard_audio_sampling_rate,
|
|
)
|
|
audio_waveform = audio_waveform.mean(dim=0)
|
|
|
|
duration = audio_waveform.shape[0] / args.standard_audio_sampling_rate
|
|
init_video_length = int(duration * args.fps)
|
|
num_contexts = np.around((init_video_length + args.context_overlap) / args.context_frames)
|
|
video_length = int(num_contexts * args.context_frames - args.context_overlap)
|
|
fps = video_length / duration
|
|
print(f'The corresponding video length is {video_length}.')
|
|
|
|
kps_sequence = None
|
|
if args.kps_path != "":
|
|
assert os.path.exists(args.kps_path), f'{args.kps_path} does not exist'
|
|
kps_sequence = torch.tensor(torch.load(args.kps_path))
|
|
print(f'The original length of kps sequence is {kps_sequence.shape[0]}.')
|
|
|
|
if kps_sequence.shape[0] > video_length:
|
|
kps_sequence = kps_sequence[:video_length, :, :]
|
|
|
|
kps_sequence = torch.nn.functional.interpolate(kps_sequence.permute(1, 2, 0), size=video_length, mode='linear')
|
|
kps_sequence = kps_sequence.permute(2, 0, 1)
|
|
print(f'The interpolated length of kps sequence is {kps_sequence.shape[0]}.')
|
|
|
|
retarget_strategy = args.retarget_strategy
|
|
if retarget_strategy == 'fix_face':
|
|
kps_sequence = torch.tensor([reference_kps] * video_length)
|
|
elif retarget_strategy == 'no_retarget':
|
|
kps_sequence = kps_sequence
|
|
elif retarget_strategy == 'offset_retarget':
|
|
kps_sequence = retarget_kps(reference_kps, kps_sequence, only_offset=True)
|
|
elif retarget_strategy == 'naive_retarget':
|
|
kps_sequence = retarget_kps(reference_kps, kps_sequence, only_offset=False)
|
|
else:
|
|
raise ValueError(f'The retarget strategy {retarget_strategy} is not supported.')
|
|
|
|
kps_images = []
|
|
for i in range(video_length):
|
|
kps_image = draw_kps_image(args.image_height, args.image_width, kps_sequence[i])
|
|
kps_images.append(Image.fromarray(kps_image))
|
|
|
|
video_tensor = pipeline(
|
|
reference_image=reference_image,
|
|
kps_images=kps_images,
|
|
audio_waveform=audio_waveform,
|
|
width=args.image_width,
|
|
height=args.image_height,
|
|
video_length=video_length,
|
|
num_inference_steps=args.num_inference_steps,
|
|
guidance_scale=args.guidance_scale,
|
|
context_frames=args.context_frames,
|
|
context_overlap=args.context_overlap,
|
|
reference_attention_weight=args.reference_attention_weight,
|
|
audio_attention_weight=args.audio_attention_weight,
|
|
num_pad_audio_frames=args.num_pad_audio_frames,
|
|
generator=generator,
|
|
do_multi_devices_inference=args.do_multi_devices_inference,
|
|
save_gpu_memory=args.save_gpu_memory,
|
|
)
|
|
|
|
if accelerator is None or accelerator.is_main_process:
|
|
save_video(video_tensor, args.audio_path, args.output_path, device, fps)
|
|
consumed_time = time.time() - start_time
|
|
generation_fps = video_tensor.shape[2] / consumed_time
|
|
print(f'The generated video has been saved at {args.output_path}. '
|
|
f'The generation time is {consumed_time:.1f} seconds. '
|
|
f'The generation FPS is {generation_fps:.2f}.')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|
|
|