MoritzLaurer HF staff commited on
Commit
2640d76
1 Parent(s): 9e2401b

Update README.md

Browse files

added updated citation and cleaned

Files changed (1) hide show
  1. README.md +27 -9
README.md CHANGED
@@ -7,29 +7,32 @@ tags:
7
  pipeline_tag: zero-shot-classification
8
  library_name: transformers
9
  ---
10
- # deberta-v3-base-zeroshot-v1
11
 
 
12
  ## Model description
13
  The model is designed for zero-shot classification with the Hugging Face pipeline.
14
  The model should be substantially better at zero-shot classification than my other zero-shot models on the
15
  Hugging Face hub: https://huggingface.co/MoritzLaurer.
16
 
17
- The model can do one universal task: determine whether a hypothesis is `true` or `not_true` given a text.
 
18
  This task format is based on the Natural Language Inference task (NLI).
19
- This task is so universal that any classification task can be reformulated into this true vs. false task.
20
 
 
21
  The model was trained on a mixture of 27 tasks and 310 classes that have been reformatted into this universal format.
22
  1. 26 classification tasks with ~400k texts:
23
- ['amazonpolarity', 'imdb', 'appreviews', 'yelpreviews', 'rottentomatoes',
24
  'emotiondair', 'emocontext', 'empathetic',
25
  'financialphrasebank', 'banking77', 'massive',
26
  'wikitoxic_toxicaggregated', 'wikitoxic_obscene', 'wikitoxic_threat', 'wikitoxic_insult', 'wikitoxic_identityhate',
27
  'hateoffensive', 'hatexplain', 'biasframes_offensive', 'biasframes_sex', 'biasframes_intent',
28
  'agnews', 'yahootopics',
29
- 'trueteacher', 'spam', 'wellformedquery',]
30
- 2. Five NLI datasets with ~885k texts: ["mnli", "anli", "fever", "wanli", "ling"]
31
 
32
- Note that compared to other NLI models, this model predicts two classes (true vs. not_true) as opposed to three classes (entailment/neutral/contradiction)
 
33
 
34
 
35
  ### How to use the model
@@ -44,7 +47,6 @@ print(output)
44
  ```
45
 
46
  ### Details on data and training
47
-
48
  The code for preparing the data and training & evaluating the model is fully open-source here: https://github.com/MoritzLaurer/zeroshot-classifier/tree/main
49
 
50
  ## Limitations and bias
@@ -53,7 +55,23 @@ The model can only do text classification tasks.
53
  Please consult the original DeBERTa paper and the papers for the different datasets for potential biases.
54
 
55
  ## Citation
56
- If you use this model, please cite: Laurer, Moritz, Wouter van Atteveldt, Andreu Salleras Casas, and Kasper Welbers. 2022. ‘Less Annotating, More Classifying – Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT - NLI’. Preprint, June. Open Science Framework. https://osf.io/74b8k.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
  ### Ideas for cooperation or questions?
59
  If you have questions or ideas for cooperation, contact me at m{dot}laurer{at}vu{dot}nl or [LinkedIn](https://www.linkedin.com/in/moritz-laurer/)
 
7
  pipeline_tag: zero-shot-classification
8
  library_name: transformers
9
  ---
 
10
 
11
+ # deberta-v3-base-zeroshot-v1
12
  ## Model description
13
  The model is designed for zero-shot classification with the Hugging Face pipeline.
14
  The model should be substantially better at zero-shot classification than my other zero-shot models on the
15
  Hugging Face hub: https://huggingface.co/MoritzLaurer.
16
 
17
+ The model can do one universal task: determine whether a hypothesis is `true` or `not_true`
18
+ given a text (also called `entailment` vs. `not_entailment`).
19
  This task format is based on the Natural Language Inference task (NLI).
20
+ The task is so universal that any classification task can be reformulated into the task.
21
 
22
+ ## Training data
23
  The model was trained on a mixture of 27 tasks and 310 classes that have been reformatted into this universal format.
24
  1. 26 classification tasks with ~400k texts:
25
+ 'amazonpolarity', 'imdb', 'appreviews', 'yelpreviews', 'rottentomatoes',
26
  'emotiondair', 'emocontext', 'empathetic',
27
  'financialphrasebank', 'banking77', 'massive',
28
  'wikitoxic_toxicaggregated', 'wikitoxic_obscene', 'wikitoxic_threat', 'wikitoxic_insult', 'wikitoxic_identityhate',
29
  'hateoffensive', 'hatexplain', 'biasframes_offensive', 'biasframes_sex', 'biasframes_intent',
30
  'agnews', 'yahootopics',
31
+ 'trueteacher', 'spam', 'wellformedquery'
32
+ 2. Five NLI datasets with ~885k texts: "mnli", "anli", "fever", "wanli", "ling"
33
 
34
+ Note that compared to other NLI models, this model predicts two classes (`entailment` vs. `not_entailment`)
35
+ as opposed to three classes (entailment/neutral/contradiction)
36
 
37
 
38
  ### How to use the model
 
47
  ```
48
 
49
  ### Details on data and training
 
50
  The code for preparing the data and training & evaluating the model is fully open-source here: https://github.com/MoritzLaurer/zeroshot-classifier/tree/main
51
 
52
  ## Limitations and bias
 
55
  Please consult the original DeBERTa paper and the papers for the different datasets for potential biases.
56
 
57
  ## Citation
58
+ If you use this model, please cite:
59
+ ```
60
+ @article{laurer_less_2023,
61
+ title = {Less {Annotating}, {More} {Classifying}: {Addressing} the {Data} {Scarcity} {Issue} of {Supervised} {Machine} {Learning} with {Deep} {Transfer} {Learning} and {BERT}-{NLI}},
62
+ issn = {1047-1987, 1476-4989},
63
+ shorttitle = {Less {Annotating}, {More} {Classifying}},
64
+ url = {https://www.cambridge.org/core/product/identifier/S1047198723000207/type/journal_article},
65
+ doi = {10.1017/pan.2023.20},
66
+ language = {en},
67
+ urldate = {2023-06-20},
68
+ journal = {Political Analysis},
69
+ author = {Laurer, Moritz and Van Atteveldt, Wouter and Casas, Andreu and Welbers, Kasper},
70
+ month = jun,
71
+ year = {2023},
72
+ pages = {1--33},
73
+ }
74
+ ```
75
 
76
  ### Ideas for cooperation or questions?
77
  If you have questions or ideas for cooperation, contact me at m{dot}laurer{at}vu{dot}nl or [LinkedIn](https://www.linkedin.com/in/moritz-laurer/)