MugheesAwan11 commited on
Commit
e2418d9
1 Parent(s): 931b8a5

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,554 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_ndcg@100
23
+ - cosine_mrr@10
24
+ - cosine_map@100
25
+ pipeline_tag: sentence-similarity
26
+ tags:
27
+ - sentence-transformers
28
+ - sentence-similarity
29
+ - feature-extraction
30
+ - generated_from_trainer
31
+ - dataset_size:9000
32
+ - loss:MatryoshkaLoss
33
+ - loss:MultipleNegativesRankingLoss
34
+ widget:
35
+ - source_sentence: 個人向け資産事業の商品、能力、専門性を維持していくこともできるでしょう」 シティのプライベート・バンクは、世界で最も富裕な個人、家族、法律事務所向けに資産の
36
+ 保護と責任ある蓄積を支援しています。シティ・プライベートバンクの顧客ビジネスの合計 は約 5,500 億ドルに上ります。1 万 3,000 を超える超富裕層のお客様にサービスを提供して
37
+ おり、その中には�
38
+ sentences:
39
+ - How does the Citi Private Bank assist its clients and what is the total customer
40
+ business of Citi Private Bank?
41
+ - What are the effects of opening new card accounts for balance transfer?
42
+ - What are some resources to learn about personal finance and credit?
43
+ - source_sentence: "今後とも一層のお引立てを賜ります よう、お願い申し上げます。 ◆管理会社 ◆代行協会員 シティグループ・ファースト・ シティグループ証券株式会社\
44
+ \ インベストメント・マネジメント・リミテッド \n 目 次 頁 Ⅰ.運用の経過等 1 Ⅱ.直近10期の運用実績 5 Ⅲ.ファンドの経理状況 6 Ⅳ.お知らせ\
45
+ \ 36 (注1)米ドルの円換算額は、便宜上、2016年4月28日現在"
46
+ sentences:
47
+ - What are the specifications of Citi® Savings Account?
48
+ - What are the fees for Citi Miles AheadSM Savings Account?
49
+ - What are some regulations that might affect my use of your accounts and products?
50
+ - source_sentence: 'antage® Miles earned from the Miles Boost do not count toward
51
+ elite-status Exclusions qualification or AAdvantage Million MilerSM status. and
52
+ Citi Miles Ahead Savings account owners will not earn a Miles Boost for: Restrictions
53
+ • Purchases made using a different Eligible Card than the one associated with
54
+ your Citi Miles Ahead Savings account; • Purchases appearing on an Eligible Card
55
+ after the Eligible Card or Citi Miles Ahead Savings account closes; • Purchases
56
+ appearing on an Eligible Card billing statement if the AMB in your Citi Miles
57
+ Ahead Savings account was less than 10,000 for the calendar month preceding the
58
+ Eligible Card billing statement date. For example, if your Eligible Card billing
59
+ statement is dated July 10, and the AMB in your Citi Miles Ahead Savings account
60
+ for the month of June was nine thousand ($9,000) dollars, you will not earn a
61
+ Miles Boost for purchases appearing on that July 10 billing statement. • AAdvantage®
62
+ Miles'
63
+ sentences:
64
+ - What impact will China's tech advancement have on global market?
65
+ - What are the bonus miles requirements for Citi Miles Ahead Savings account?
66
+ - What features are being phased out at Citibank ATMs between June 1 and June 23,
67
+ 2023?
68
+ - source_sentence: ' collateral movements as agreed Reinvestment of Cash money market
69
+ funds by the parties. Citi has controls in Citi offers opportunities to reduce
70
+ • Offers client-friendly dashboard for place to help prevent unauthorized service
71
+ expenses through the one-stop access to balances and an movements of collateral.
72
+ Earnings Credit Rate (ECR) Program interface for research and trading. or cash
73
+ investment capabilities Tri-Party ACA Solutions through Citi Margin Manager. Where
74
+ subject to an ACA, the pledgor Under a tri-party ACA with Citi, may be allowed
75
+ to reinvest cash secured parties can choose to 1) allow Earning Credit Rate (ECR)
76
+ Program collateral given secured party’s the pledgor to withdraw or replace With
77
+ the ECR Program, Citi assists approval. collateral at their discretion or 2) clients
78
+ with collateral accounts to require the pledgor to obtain approval earn credits
79
+ on U.S. dollar deposits to • Displays portfolio information online for asset release.
80
+ help offset services expenses. Citi’s and identifies eligible investments ECR'
81
+ sentences:
82
+ - In what situations is Citibank not liable to consumers under the agreement?
83
+ - What services does Citi provide in relation to collateral margin management?
84
+ - What are the changes in equity and reserves?
85
+ - source_sentence: " be sure you had enough cash on hand to pay the fare. Channels,\
86
+ \ TTS Of course, all of that changed in the blink of an eye with the advent of\
87
+ \ ride sharing. Now getting from point A to point B is as easy as opening an app\
88
+ \ on your smart phone. Not only is it simple to book the ride, but once your account\
89
+ \ is set up, payment is absolutely seamless. No longer do you have to search your\
90
+ \ wallet for cash. The app knows who you are and the entire transaction happens\
91
+ \ in the background, without further input on the part of the rider or the driver.\
92
+ \ Payment is embedded in the experience as part of the natural flow, so you don’t\
93
+ \ have to think about it. \n 2 Treasury and Trade Solutions The invisible bank\
94
+ \ 3 This is just one example of the changes happening in today’s hyper-connected\
95
+ \ world. Artificial intelligence (AI), cloud is poised to deliver the “invisible\
96
+ \ bank,” where treasury and banking functions meld together. The continuous evolution\
97
+ \ of banking computing"
98
+ sentences:
99
+ - How is Mexico's credit rating affecting its economy?
100
+ - How is a credit card introductory APR beneficial?
101
+ - What is the advent of ride sharing?
102
+ model-index:
103
+ - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
104
+ results:
105
+ - task:
106
+ type: information-retrieval
107
+ name: Information Retrieval
108
+ dataset:
109
+ name: dim 768
110
+ type: dim_768
111
+ metrics:
112
+ - type: cosine_accuracy@1
113
+ value: 0.049
114
+ name: Cosine Accuracy@1
115
+ - type: cosine_accuracy@3
116
+ value: 0.115
117
+ name: Cosine Accuracy@3
118
+ - type: cosine_accuracy@5
119
+ value: 0.15
120
+ name: Cosine Accuracy@5
121
+ - type: cosine_accuracy@10
122
+ value: 0.205
123
+ name: Cosine Accuracy@10
124
+ - type: cosine_precision@1
125
+ value: 0.049
126
+ name: Cosine Precision@1
127
+ - type: cosine_precision@3
128
+ value: 0.03833333333333333
129
+ name: Cosine Precision@3
130
+ - type: cosine_precision@5
131
+ value: 0.03
132
+ name: Cosine Precision@5
133
+ - type: cosine_precision@10
134
+ value: 0.0205
135
+ name: Cosine Precision@10
136
+ - type: cosine_recall@1
137
+ value: 0.049
138
+ name: Cosine Recall@1
139
+ - type: cosine_recall@3
140
+ value: 0.115
141
+ name: Cosine Recall@3
142
+ - type: cosine_recall@5
143
+ value: 0.15
144
+ name: Cosine Recall@5
145
+ - type: cosine_recall@10
146
+ value: 0.205
147
+ name: Cosine Recall@10
148
+ - type: cosine_ndcg@10
149
+ value: 0.11801851461489118
150
+ name: Cosine Ndcg@10
151
+ - type: cosine_ndcg@100
152
+ value: 0.17325672881676993
153
+ name: Cosine Ndcg@100
154
+ - type: cosine_mrr@10
155
+ value: 0.09126269841269843
156
+ name: Cosine Mrr@10
157
+ - type: cosine_map@100
158
+ value: 0.1008423759256844
159
+ name: Cosine Map@100
160
+ ---
161
+
162
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
163
+
164
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
165
+
166
+ ## Model Details
167
+
168
+ ### Model Description
169
+ - **Model Type:** Sentence Transformer
170
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
171
+ - **Maximum Sequence Length:** 512 tokens
172
+ - **Output Dimensionality:** 768 tokens
173
+ - **Similarity Function:** Cosine Similarity
174
+ <!-- - **Training Dataset:** Unknown -->
175
+ - **Language:** en
176
+ - **License:** apache-2.0
177
+
178
+ ### Model Sources
179
+
180
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
181
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
182
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
183
+
184
+ ### Full Model Architecture
185
+
186
+ ```
187
+ SentenceTransformer(
188
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
189
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
190
+ (2): Normalize()
191
+ )
192
+ ```
193
+
194
+ ## Usage
195
+
196
+ ### Direct Usage (Sentence Transformers)
197
+
198
+ First install the Sentence Transformers library:
199
+
200
+ ```bash
201
+ pip install -U sentence-transformers
202
+ ```
203
+
204
+ Then you can load this model and run inference.
205
+ ```python
206
+ from sentence_transformers import SentenceTransformer
207
+
208
+ # Download from the 🤗 Hub
209
+ model = SentenceTransformer("MugheesAwan11/bge-base-citi-dataset-9k-1k-e1")
210
+ # Run inference
211
+ sentences = [
212
+ ' be sure you had enough cash on hand to pay the fare. Channels, TTS Of course, all of that changed in the blink of an eye with the advent of ride sharing. Now getting from point A to point B is as easy as opening an app on your smart phone. Not only is it simple to book the ride, but once your account is set up, payment is absolutely seamless. No longer do you have to search your wallet for cash. The app knows who you are and the entire transaction happens in the background, without further input on the part of the rider or the driver. Payment is embedded in the experience as part of the natural flow, so you don’t have to think about it. \n 2 Treasury and Trade Solutions The invisible bank 3 This is just one example of the changes happening in today’s hyper-connected world. Artificial intelligence (AI), cloud is poised to deliver the “invisible bank,” where treasury and banking functions meld together. The continuous evolution of banking computing',
213
+ 'What is the advent of ride sharing?',
214
+ 'How is a credit card introductory APR beneficial?',
215
+ ]
216
+ embeddings = model.encode(sentences)
217
+ print(embeddings.shape)
218
+ # [3, 768]
219
+
220
+ # Get the similarity scores for the embeddings
221
+ similarities = model.similarity(embeddings, embeddings)
222
+ print(similarities.shape)
223
+ # [3, 3]
224
+ ```
225
+
226
+ <!--
227
+ ### Direct Usage (Transformers)
228
+
229
+ <details><summary>Click to see the direct usage in Transformers</summary>
230
+
231
+ </details>
232
+ -->
233
+
234
+ <!--
235
+ ### Downstream Usage (Sentence Transformers)
236
+
237
+ You can finetune this model on your own dataset.
238
+
239
+ <details><summary>Click to expand</summary>
240
+
241
+ </details>
242
+ -->
243
+
244
+ <!--
245
+ ### Out-of-Scope Use
246
+
247
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
248
+ -->
249
+
250
+ ## Evaluation
251
+
252
+ ### Metrics
253
+
254
+ #### Information Retrieval
255
+ * Dataset: `dim_768`
256
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
257
+
258
+ | Metric | Value |
259
+ |:--------------------|:-----------|
260
+ | cosine_accuracy@1 | 0.049 |
261
+ | cosine_accuracy@3 | 0.115 |
262
+ | cosine_accuracy@5 | 0.15 |
263
+ | cosine_accuracy@10 | 0.205 |
264
+ | cosine_precision@1 | 0.049 |
265
+ | cosine_precision@3 | 0.0383 |
266
+ | cosine_precision@5 | 0.03 |
267
+ | cosine_precision@10 | 0.0205 |
268
+ | cosine_recall@1 | 0.049 |
269
+ | cosine_recall@3 | 0.115 |
270
+ | cosine_recall@5 | 0.15 |
271
+ | cosine_recall@10 | 0.205 |
272
+ | cosine_ndcg@10 | 0.118 |
273
+ | cosine_ndcg@100 | 0.1733 |
274
+ | cosine_mrr@10 | 0.0913 |
275
+ | **cosine_map@100** | **0.1008** |
276
+
277
+ <!--
278
+ ## Bias, Risks and Limitations
279
+
280
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
281
+ -->
282
+
283
+ <!--
284
+ ### Recommendations
285
+
286
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
287
+ -->
288
+
289
+ ## Training Details
290
+
291
+ ### Training Dataset
292
+
293
+ #### Unnamed Dataset
294
+
295
+
296
+ * Size: 9,000 training samples
297
+ * Columns: <code>positive</code> and <code>anchor</code>
298
+ * Approximate statistics based on the first 1000 samples:
299
+ | | positive | anchor |
300
+ |:--------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
301
+ | type | string | string |
302
+ | details | <ul><li>min: 116 tokens</li><li>mean: 207.16 tokens</li><li>max: 288 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 15.73 tokens</li><li>max: 37 tokens</li></ul> |
303
+ * Samples:
304
+ | positive | anchor |
305
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
306
+ | <code>ation. US 10-year Treasury yields have risen more than 30 basis points since the Sep 20 FOMC meeting, but just 5 basis points for 2-year notes, steepening the yield curve. Most importantly, the recent rise in rates was a “break out” for yields above post-COVID expansion highs (Figure 4). Figure 4: 10-year US Nominal Treasury yield and 10-year Inflation Indexed US Treasury Source: Haver Analytics as of September 28, 2023. Gray areas are recessions. Past performance is no guarantee of future results. Real results may vary. Citi Global Wealth Investments | CIO Strategy Bulletin | 3 <br>So, why would rates jump dramatically with the Fed announcement? One reason is that price-insensitive Treasury buyers of the past 15 years are moving to the sidelines. The Fed has reduced US Treasury and mortgage-backed securities holdings by more than $1 trillion since starting quantitative tightening (QT) in</code> | <code>What is the return on average assets for Citigroup?</code> |
307
+ | <code> extension How to Save Money Using the Citi Shop Extension | Citi.com Save money online shopping Save shopping online How to save money shopping online How to Save Money Shopping Online | Citi.com How to get coupons online How to get discounts online Online shopping best deals 11 Ways to Get Online Deals and Discounts | Citi.com Coupons browser extension Chrome extension for coupon codes Coupon extensions for chrome Google Chrome Browser Extensions to Help You Save Money | Citi.com benefits of shopping online why is shopping online better reasons to shop online Advantages of Online Shopping | Citi.com View All (5) View All Categories > Additional Resources • Insights and Tools Utilize these resources to help you assess your current finances & plan for the future. • FICO® Score Learn how FICO® Scores are determined, why they matter and more. • Glossary Review financial terms & definitions to help you better understand credit & finances. Back to Top Back to Top Equal housing lender Contact Us • Consumer: 1-800-</code> | <code>How can one redeem rewards for the Costco Anywhere Visa Card by Citi?</code> |
308
+ | <code> common control of Citigroup. Outside the U.S., investment products and services are provided by other Citigroup affiliates. Investment Management services (including portfolio management) are available through CGMI, CGA, Citibank, N.A. and other affiliated advisory businesses. These Citigroup affiliates, including CGA, will be compensated for the respective investment management, advisory, administrative, distribution and placement services they may provide. International Personal Bank U.S. (“IPB U.S.”) is a business of Citigroup which provides its clients access to a broad array of products and services available through Citigroup, its bank and non-bank affiliates worldwide (collectively, “Citi”). Through IPB U.S. prospects and clients have access to the Citigold® Private Client International, Citigold® International, International Personal, Citi Global Executive Preferred, and Citi Global Executive Account Packages. Investment products and services are made available through Citi Personal Investments International (“CPII”), a business</code> | <code>What are the typical assumpitons given in the report?</code> |
309
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
310
+ ```json
311
+ {
312
+ "loss": "MultipleNegativesRankingLoss",
313
+ "matryoshka_dims": [
314
+ 768
315
+ ],
316
+ "matryoshka_weights": [
317
+ 1
318
+ ],
319
+ "n_dims_per_step": -1
320
+ }
321
+ ```
322
+
323
+ ### Training Hyperparameters
324
+ #### Non-Default Hyperparameters
325
+
326
+ - `eval_strategy`: epoch
327
+ - `per_device_train_batch_size`: 32
328
+ - `per_device_eval_batch_size`: 16
329
+ - `learning_rate`: 2e-05
330
+ - `num_train_epochs`: 1
331
+ - `lr_scheduler_type`: cosine
332
+ - `warmup_ratio`: 0.1
333
+ - `bf16`: True
334
+ - `tf32`: True
335
+ - `load_best_model_at_end`: True
336
+ - `optim`: adamw_torch_fused
337
+ - `batch_sampler`: no_duplicates
338
+
339
+ #### All Hyperparameters
340
+ <details><summary>Click to expand</summary>
341
+
342
+ - `overwrite_output_dir`: False
343
+ - `do_predict`: False
344
+ - `eval_strategy`: epoch
345
+ - `prediction_loss_only`: True
346
+ - `per_device_train_batch_size`: 32
347
+ - `per_device_eval_batch_size`: 16
348
+ - `per_gpu_train_batch_size`: None
349
+ - `per_gpu_eval_batch_size`: None
350
+ - `gradient_accumulation_steps`: 1
351
+ - `eval_accumulation_steps`: None
352
+ - `learning_rate`: 2e-05
353
+ - `weight_decay`: 0.0
354
+ - `adam_beta1`: 0.9
355
+ - `adam_beta2`: 0.999
356
+ - `adam_epsilon`: 1e-08
357
+ - `max_grad_norm`: 1.0
358
+ - `num_train_epochs`: 1
359
+ - `max_steps`: -1
360
+ - `lr_scheduler_type`: cosine
361
+ - `lr_scheduler_kwargs`: {}
362
+ - `warmup_ratio`: 0.1
363
+ - `warmup_steps`: 0
364
+ - `log_level`: passive
365
+ - `log_level_replica`: warning
366
+ - `log_on_each_node`: True
367
+ - `logging_nan_inf_filter`: True
368
+ - `save_safetensors`: True
369
+ - `save_on_each_node`: False
370
+ - `save_only_model`: False
371
+ - `restore_callback_states_from_checkpoint`: False
372
+ - `no_cuda`: False
373
+ - `use_cpu`: False
374
+ - `use_mps_device`: False
375
+ - `seed`: 42
376
+ - `data_seed`: None
377
+ - `jit_mode_eval`: False
378
+ - `use_ipex`: False
379
+ - `bf16`: True
380
+ - `fp16`: False
381
+ - `fp16_opt_level`: O1
382
+ - `half_precision_backend`: auto
383
+ - `bf16_full_eval`: False
384
+ - `fp16_full_eval`: False
385
+ - `tf32`: True
386
+ - `local_rank`: 0
387
+ - `ddp_backend`: None
388
+ - `tpu_num_cores`: None
389
+ - `tpu_metrics_debug`: False
390
+ - `debug`: []
391
+ - `dataloader_drop_last`: False
392
+ - `dataloader_num_workers`: 0
393
+ - `dataloader_prefetch_factor`: None
394
+ - `past_index`: -1
395
+ - `disable_tqdm`: False
396
+ - `remove_unused_columns`: True
397
+ - `label_names`: None
398
+ - `load_best_model_at_end`: True
399
+ - `ignore_data_skip`: False
400
+ - `fsdp`: []
401
+ - `fsdp_min_num_params`: 0
402
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
403
+ - `fsdp_transformer_layer_cls_to_wrap`: None
404
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
405
+ - `deepspeed`: None
406
+ - `label_smoothing_factor`: 0.0
407
+ - `optim`: adamw_torch_fused
408
+ - `optim_args`: None
409
+ - `adafactor`: False
410
+ - `group_by_length`: False
411
+ - `length_column_name`: length
412
+ - `ddp_find_unused_parameters`: None
413
+ - `ddp_bucket_cap_mb`: None
414
+ - `ddp_broadcast_buffers`: False
415
+ - `dataloader_pin_memory`: True
416
+ - `dataloader_persistent_workers`: False
417
+ - `skip_memory_metrics`: True
418
+ - `use_legacy_prediction_loop`: False
419
+ - `push_to_hub`: False
420
+ - `resume_from_checkpoint`: None
421
+ - `hub_model_id`: None
422
+ - `hub_strategy`: every_save
423
+ - `hub_private_repo`: False
424
+ - `hub_always_push`: False
425
+ - `gradient_checkpointing`: False
426
+ - `gradient_checkpointing_kwargs`: None
427
+ - `include_inputs_for_metrics`: False
428
+ - `eval_do_concat_batches`: True
429
+ - `fp16_backend`: auto
430
+ - `push_to_hub_model_id`: None
431
+ - `push_to_hub_organization`: None
432
+ - `mp_parameters`:
433
+ - `auto_find_batch_size`: False
434
+ - `full_determinism`: False
435
+ - `torchdynamo`: None
436
+ - `ray_scope`: last
437
+ - `ddp_timeout`: 1800
438
+ - `torch_compile`: False
439
+ - `torch_compile_backend`: None
440
+ - `torch_compile_mode`: None
441
+ - `dispatch_batches`: None
442
+ - `split_batches`: None
443
+ - `include_tokens_per_second`: False
444
+ - `include_num_input_tokens_seen`: False
445
+ - `neftune_noise_alpha`: None
446
+ - `optim_target_modules`: None
447
+ - `batch_eval_metrics`: False
448
+ - `batch_sampler`: no_duplicates
449
+ - `multi_dataset_batch_sampler`: proportional
450
+
451
+ </details>
452
+
453
+ ### Training Logs
454
+ | Epoch | Step | Training Loss | dim_768_cosine_map@100 |
455
+ |:-------:|:-------:|:-------------:|:----------------------:|
456
+ | 0.0355 | 10 | 2.0527 | - |
457
+ | 0.0709 | 20 | 2.3092 | - |
458
+ | 0.1064 | 30 | 1.8688 | - |
459
+ | 0.1418 | 40 | 1.8818 | - |
460
+ | 0.1773 | 50 | 1.75 | - |
461
+ | 0.2128 | 60 | 1.8462 | - |
462
+ | 0.2482 | 70 | 1.7534 | - |
463
+ | 0.2837 | 80 | 1.7534 | - |
464
+ | 0.3191 | 90 | 1.7454 | - |
465
+ | 0.3546 | 100 | 1.7037 | - |
466
+ | 0.3901 | 110 | 1.6765 | - |
467
+ | 0.4255 | 120 | 1.5392 | - |
468
+ | 0.4610 | 130 | 1.722 | - |
469
+ | 0.4965 | 140 | 1.5609 | - |
470
+ | 0.5319 | 150 | 1.6001 | - |
471
+ | 0.5674 | 160 | 1.5694 | - |
472
+ | 0.6028 | 170 | 1.7528 | - |
473
+ | 0.6383 | 180 | 1.5393 | - |
474
+ | 0.6738 | 190 | 1.6765 | - |
475
+ | 0.7092 | 200 | 1.4197 | - |
476
+ | 0.7447 | 210 | 1.5231 | - |
477
+ | 0.7801 | 220 | 1.7733 | - |
478
+ | 0.8156 | 230 | 1.5464 | - |
479
+ | 0.8511 | 240 | 1.5321 | - |
480
+ | 0.8865 | 250 | 1.5727 | - |
481
+ | 0.9220 | 260 | 1.5909 | - |
482
+ | 0.9574 | 270 | 1.6485 | - |
483
+ | 0.9929 | 280 | 1.6605 | - |
484
+ | **1.0** | **282** | **-** | **0.1008** |
485
+
486
+ * The bold row denotes the saved checkpoint.
487
+
488
+ ### Framework Versions
489
+ - Python: 3.10.14
490
+ - Sentence Transformers: 3.0.1
491
+ - Transformers: 4.41.2
492
+ - PyTorch: 2.1.2+cu121
493
+ - Accelerate: 0.32.1
494
+ - Datasets: 2.19.1
495
+ - Tokenizers: 0.19.1
496
+
497
+ ## Citation
498
+
499
+ ### BibTeX
500
+
501
+ #### Sentence Transformers
502
+ ```bibtex
503
+ @inproceedings{reimers-2019-sentence-bert,
504
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
505
+ author = "Reimers, Nils and Gurevych, Iryna",
506
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
507
+ month = "11",
508
+ year = "2019",
509
+ publisher = "Association for Computational Linguistics",
510
+ url = "https://arxiv.org/abs/1908.10084",
511
+ }
512
+ ```
513
+
514
+ #### MatryoshkaLoss
515
+ ```bibtex
516
+ @misc{kusupati2024matryoshka,
517
+ title={Matryoshka Representation Learning},
518
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
519
+ year={2024},
520
+ eprint={2205.13147},
521
+ archivePrefix={arXiv},
522
+ primaryClass={cs.LG}
523
+ }
524
+ ```
525
+
526
+ #### MultipleNegativesRankingLoss
527
+ ```bibtex
528
+ @misc{henderson2017efficient,
529
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
530
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
531
+ year={2017},
532
+ eprint={1705.00652},
533
+ archivePrefix={arXiv},
534
+ primaryClass={cs.CL}
535
+ }
536
+ ```
537
+
538
+ <!--
539
+ ## Glossary
540
+
541
+ *Clearly define terms in order to be accessible across audiences.*
542
+ -->
543
+
544
+ <!--
545
+ ## Model Card Authors
546
+
547
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
548
+ -->
549
+
550
+ <!--
551
+ ## Model Card Contact
552
+
553
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
554
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a04046e3388116aabf58f97dc264b59625885e2a181a93e99971837a88b8744
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff