--- language: - ka license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Small Ka -Tripti results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Fleurs type: google/fleurs config: kn_in split: None args: 'config: ka, split: test' metrics: - name: Wer type: wer value: 42.97683977551181 --- # Whisper Small Ka -Tripti This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.2298 - Wer: 42.9768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0238 | 6.0606 | 1000 | 0.1512 | 45.2296 | | 0.0021 | 12.1212 | 2000 | 0.2023 | 43.6566 | | 0.0001 | 18.1818 | 3000 | 0.2234 | 43.0085 | | 0.0001 | 24.2424 | 4000 | 0.2298 | 42.9768 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1