Update README.md
Browse files
README.md
CHANGED
@@ -1,90 +1,103 @@
|
|
1 |
-
---
|
2 |
-
license: gpl-3.0
|
3 |
-
language:
|
4 |
-
- en
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: gpl-3.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
datasets:
|
6 |
+
- Mxode/Magpie-Pro-10K-GPT4o-mini
|
7 |
+
pipeline_tag: text2text-generation
|
8 |
+
tags:
|
9 |
+
- chemistry
|
10 |
+
- biology
|
11 |
+
- finance
|
12 |
+
- legal
|
13 |
+
- music
|
14 |
+
- code
|
15 |
+
- climate
|
16 |
+
- medical
|
17 |
+
- text-generation-inference
|
18 |
+
---
|
19 |
+
# NanoLM-0.3B-Instruct-v2
|
20 |
+
|
21 |
+
|
22 |
+
English | [简体中文](README_zh-CN.md)
|
23 |
+
|
24 |
+
|
25 |
+
## Introduction
|
26 |
+
|
27 |
+
In order to explore the potential of small models, I have attempted to build a series of them, which are available in the [NanoLM Collections](https://huggingface.co/collections/Mxode/nanolm-66d6d75b4a69536bca2705b2).
|
28 |
+
|
29 |
+
This is NanoLM-0.3B-Instruct-v2. The model currently supports **English only**.
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
## Model Details
|
34 |
+
|
35 |
+
| Nano LMs | Non-emb Params | Arch | Layers | Dim | Heads | Seq Len |
|
36 |
+
| :----------: | :------------------: | :---: | :----: | :-------: | :---: | :---: |
|
37 |
+
| 25M | 15M | MistralForCausalLM | 12 | 312 | 12 |2K|
|
38 |
+
| 70M | 42M | LlamaForCausalLM | 12 | 576 | 9 |2K|
|
39 |
+
| **0.3B** | **180M** | **Qwen2ForCausalLM** | **12** | **896** | **14** | **4K** |
|
40 |
+
| 1B | 840M | Qwen2ForCausalLM | 18 | 1536 | 12 |4K|
|
41 |
+
|
42 |
+
The tokenizer and model architecture of NanoLM-0.3B-Instruct-v1.1 are the same as [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B), but the number of layers has been reduced from 24 to 12.
|
43 |
+
|
44 |
+
As a result, NanoLM-0.3B-Instruct-v1.1 has only 0.3 billion parameters, with approximately **180 million non-embedding parameters**.
|
45 |
+
|
46 |
+
Despite this, NanoLM-0.3B-Instruct-v1.1 still demonstrates strong instruction-following capabilities.
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
## How to use
|
51 |
+
|
52 |
+
```python
|
53 |
+
import torch
|
54 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
55 |
+
|
56 |
+
model_path = 'Mxode/NanoLM-0.3B-Instruct-v2'
|
57 |
+
|
58 |
+
model = AutoModelForCausalLM.from_pretrained(model_path).to('cuda:0', torch.bfloat16)
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
60 |
+
|
61 |
+
|
62 |
+
def get_response(prompt: str, **kwargs):
|
63 |
+
generation_args = dict(
|
64 |
+
max_new_tokens = kwargs.pop("max_new_tokens", 512),
|
65 |
+
do_sample = kwargs.pop("do_sample", True),
|
66 |
+
temperature = kwargs.pop("temperature", 0.7),
|
67 |
+
top_p = kwargs.pop("top_p", 0.8),
|
68 |
+
top_k = kwargs.pop("top_k", 40),
|
69 |
+
**kwargs
|
70 |
+
)
|
71 |
+
|
72 |
+
messages = [
|
73 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
74 |
+
{"role": "user", "content": prompt}
|
75 |
+
]
|
76 |
+
text = tokenizer.apply_chat_template(
|
77 |
+
messages,
|
78 |
+
tokenize=False,
|
79 |
+
add_generation_prompt=True
|
80 |
+
)
|
81 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
82 |
+
|
83 |
+
generated_ids = model.generate(model_inputs.input_ids, **generation_args)
|
84 |
+
generated_ids = [
|
85 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
86 |
+
]
|
87 |
+
|
88 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
89 |
+
return response
|
90 |
+
|
91 |
+
|
92 |
+
prompt1 = "Calculate (4 - 1) * 7"
|
93 |
+
print(get_response(prompt1, do_sample=False))
|
94 |
+
|
95 |
+
"""
|
96 |
+
To calculate the expression (4 - 1) * 7, we need to follow the order of operations (PEMDAS):
|
97 |
+
|
98 |
+
1. Evaluate the expression inside the parentheses: 4 - 1 = 3
|
99 |
+
2. Multiply 3 by 7: 3 * 7 = 21
|
100 |
+
|
101 |
+
So, (4 - 1) * 7 = 21.
|
102 |
+
"""
|
103 |
+
```
|