--- license: gpl-3.0 language: - en --- # NanoLM-0.3B-Instruct-v2 English | [简体中文](README_zh-CN.md) ## Introduction In order to explore the potential of small models, I have attempted to build a series of them, which are available in the [NanoLM Collections](https://huggingface.co/collections/Mxode/nanolm-66d6d75b4a69536bca2705b2). This is NanoLM-0.3B-Instruct-v2. The model currently supports **English only**. ## Model Details | Nano LMs | Non-emb Params | Arch | Layers | Dim | Heads | Seq Len | | :----------: | :------------------: | :---: | :----: | :-------: | :---: | :---: | | 25M | 15M | MistralForCausalLM | 12 | 312 | 12 |2K| | 70M | 42M | LlamaForCausalLM | 12 | 576 | 9 |2K| | **0.3B** | **180M** | **Qwen2ForCausalLM** | **12** | **896** | **14** | **4K** | | 1B | 840M | Qwen2ForCausalLM | 18 | 1536 | 12 |4K| The tokenizer and model architecture of NanoLM-0.3B-Instruct-v1.1 are the same as [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B), but the number of layers has been reduced from 24 to 12. As a result, NanoLM-0.3B-Instruct-v1.1 has only 0.3 billion parameters, with approximately **180 million non-embedding parameters**. Despite this, NanoLM-0.3B-Instruct-v1.1 still demonstrates strong instruction-following capabilities. ## How to use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_path = 'Mxode/NanoLM-0.3B-Instruct-v2' model = AutoModelForCausalLM.from_pretrained(model_path).to('cuda:0', torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(model_path) def get_response(prompt: str, **kwargs): generation_args = dict( max_new_tokens = kwargs.pop("max_new_tokens", 512), do_sample = kwargs.pop("do_sample", True), temperature = kwargs.pop("temperature", 0.7), top_p = kwargs.pop("top_p", 0.8), top_k = kwargs.pop("top_k", 40), **kwargs ) messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate(model_inputs.input_ids, **generation_args) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response prompt1 = "Calculate (4 - 1) * 7" print(get_response(prompt1, do_sample=False)) """ To calculate the expression (4 - 1) * 7, we need to follow the order of operations (PEMDAS): 1. Evaluate the expression inside the parentheses: 4 - 1 = 3 2. Multiply 3 by 7: 3 * 7 = 21 So, (4 - 1) * 7 = 21. """ ```