# NanoLM-1B-Instruct-v2 [English](README.md) | 简体中文 ## Introduction 为了探究小模型的潜能,我尝试构建一系列小模型,并存放于 [NanoLM Collections](https://huggingface.co/collections/Mxode/nanolm-66d6d75b4a69536bca2705b2)。 这是 NanoLM-1B-Instruct-v2,在超过 400 万条的高质量指令数据上进行了微调。该模型目前仅支持**英文**。 ## 模型详情 | Nano LMs | Non-emb Params | Arch | Layers | Dim | Heads | Seq Len | | :----------: | :------------------: | :---: | :----: | :-------: | :---: | :---: | | 25M | 15M | MistralForCausalLM | 12 | 312 | 12 | 2K | | 70M | 42M | LlamaForCausalLM | 12 | 576 | 9 |2K| | 0.3B | 180M | Qwen2ForCausalLM | 12 | 896 | 14 |4K| | **1B** | **840M** | **Qwen2ForCausalLM** | **18** | **1536** | **12** | **4K** | ## 跑分 | | NanoLM-1B-Instruct-v2 | Tinyllama-1.1B | Gemma-2B | Qwen1.5-1.8B | Qwen2-1.5B | Qwen1.5-4B | Mistral-7B-v0.1 | Mistral-7B-v0.3 | Qwen1.5-7B | | :---: | :-------------------: | :------------: | :------: | :----------: | :--------: | :--------: | :-------------: | :-------------: | :--------: | | GSM8K | 44.1 | 2.3 | 17.7 | 33.6 | 55.8 | 52.2 | 37.83 | 34.5 | 53.5 | | MATH | 14.8 | 0.7 | 11.8 | 10.1 | 21.7 | 10.0 | 8.48 | - | 20.3 | | BBH | 0.42 | 0.30 | 0.35 | 0.35 | 0.36 | 0.41 | 0.44 | 0.45 | 0.46 | ## 如何使用 ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_path = 'Mxode/NanoLM-1B-Instruct-v2' model = AutoModelForCausalLM.from_pretrained(model_path).to('cuda:0', torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(model_path) def get_response(prompt: str, **kwargs): generation_args = dict( max_new_tokens = kwargs.pop("max_new_tokens", 512), do_sample = kwargs.pop("do_sample", True), temperature = kwargs.pop("temperature", 0.7), top_p = kwargs.pop("top_p", 0.8), top_k = kwargs.pop("top_k", 40), **kwargs ) messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate(model_inputs.input_ids, **generation_args) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response prompt = "Calculate (99 - 1) * (3 + 4)" print(get_response(prompt, do_sample=False)) """ To calculate \((99 - 1) * (3 + 4)\), follow the order of operations, also known as PEMDAS (Parentheses, Exponents, Multiplication and Division, and Addition and Subtraction). First, solve the expressions inside the parentheses: 1. \(99 - 1 = 98\) 2. \(3 + 4 = 7\) Now, multiply the results: \(98 * 7 = 686\) So, \((99 - 1) * (3 + 4) = 686\). """ ```