--- license: gpl-3.0 language: - en --- # NanoLM-1B-Instruct-v2 English | [简体中文](README_zh-CN.md) ## Introduction In order to explore the potential of small models, I have attempted to build a series of them, which are available in the [NanoLM Collections](https://huggingface.co/collections/Mxode/nanolm-66d6d75b4a69536bca2705b2). This is NanoLM-1B-Instruct-v2. The model currently supports **English only**. ## Model Details | Nano LMs | Non-emb Params | Arch | Layers | Dim | Heads | Seq Len | | :----------: | :------------------: | :---: | :----: | :-------: | :---: | :---: | | 25M | 15M | MistralForCausalLM | 12 | 312 | 12 | 2K | | 70M | 42M | LlamaForCausalLM | 12 | 576 | 9 |2K| | 0.3B | 180M | Qwen2ForCausalLM | 12 | 896 | 14 |4K| | **1B** | **840M** | **Qwen2ForCausalLM** | **18** | **1536** | **12** | **4K** | ## How to use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_path = 'Mxode/NanoLM-1B-Instruct-v2' model = AutoModelForCausalLM.from_pretrained(model_path).to('cuda:0', torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(model_path) def get_response(prompt: str, **kwargs): generation_args = dict( max_new_tokens = kwargs.pop("max_new_tokens", 512), do_sample = kwargs.pop("do_sample", True), temperature = kwargs.pop("temperature", 0.7), top_p = kwargs.pop("top_p", 0.8), top_k = kwargs.pop("top_k", 40), **kwargs ) messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate(model_inputs.input_ids, **generation_args) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response prompt = "Calculate (99 - 1) * (3 + 4)" print(get_response(prompt, do_sample=False)) """ To calculate \((99 - 1) * (3 + 4)\), follow the order of operations, also known as PEMDAS (Parentheses, Exponents, Multiplication and Division, and Addition and Subtraction). First, solve the expressions inside the parentheses: 1. \(99 - 1 = 98\) 2. \(3 + 4 = 7\) Now, multiply the results: \(98 * 7 = 686\) So, \((99 - 1) * (3 + 4) = 686\). """ ```