File size: 4,386 Bytes
4e42a1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import torch.nn as nn
import torch
class ResidualConv(nn.Module):
def __init__(self, input_dim, output_dim, stride, padding):
super(ResidualConv, self).__init__()
self.conv_block = nn.Sequential(
nn.BatchNorm2d(input_dim),
nn.ReLU(),
nn.Conv2d(
input_dim, output_dim, kernel_size=3, stride=stride, padding=padding
),
nn.BatchNorm2d(output_dim),
nn.ReLU(),
nn.Conv2d(output_dim, output_dim, kernel_size=3, padding=1),
)
self.conv_skip = nn.Sequential(
nn.Conv2d(input_dim, output_dim, kernel_size=3, stride=stride, padding=1),
nn.BatchNorm2d(output_dim),
)
def forward(self, x):
return self.conv_block(x) + self.conv_skip(x)
class Upsample(nn.Module):
def __init__(self, input_dim, output_dim, kernel, stride):
super(Upsample, self).__init__()
self.upsample = nn.ConvTranspose2d(
input_dim, output_dim, kernel_size=kernel, stride=stride
)
def forward(self, x):
return self.upsample(x)
class Squeeze_Excite_Block(nn.Module):
def __init__(self, channel, reduction=16):
super(Squeeze_Excite_Block, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.Sigmoid(),
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y.expand_as(x)
class ASPP(nn.Module):
def __init__(self, in_dims, out_dims, rate=[6, 12, 18]):
super(ASPP, self).__init__()
self.aspp_block1 = nn.Sequential(
nn.Conv2d(
in_dims, out_dims, 3, stride=1, padding=rate[0], dilation=rate[0]
),
nn.ReLU(inplace=True),
nn.BatchNorm2d(out_dims),
)
self.aspp_block2 = nn.Sequential(
nn.Conv2d(
in_dims, out_dims, 3, stride=1, padding=rate[1], dilation=rate[1]
),
nn.ReLU(inplace=True),
nn.BatchNorm2d(out_dims),
)
self.aspp_block3 = nn.Sequential(
nn.Conv2d(
in_dims, out_dims, 3, stride=1, padding=rate[2], dilation=rate[2]
),
nn.ReLU(inplace=True),
nn.BatchNorm2d(out_dims),
)
self.output = nn.Conv2d(len(rate) * out_dims, out_dims, 1)
self._init_weights()
def forward(self, x):
x1 = self.aspp_block1(x)
x2 = self.aspp_block2(x)
x3 = self.aspp_block3(x)
out = torch.cat([x1, x2, x3], dim=1)
return self.output(out)
def _init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
class Upsample_(nn.Module):
def __init__(self, scale=2):
super(Upsample_, self).__init__()
self.upsample = nn.Upsample(mode="bilinear", scale_factor=scale)
def forward(self, x):
return self.upsample(x)
class AttentionBlock(nn.Module):
def __init__(self, input_encoder, input_decoder, output_dim):
super(AttentionBlock, self).__init__()
self.conv_encoder = nn.Sequential(
nn.BatchNorm2d(input_encoder),
nn.ReLU(),
nn.Conv2d(input_encoder, output_dim, 3, padding=1),
nn.MaxPool2d(2, 2),
)
self.conv_decoder = nn.Sequential(
nn.BatchNorm2d(input_decoder),
nn.ReLU(),
nn.Conv2d(input_decoder, output_dim, 3, padding=1),
)
self.conv_attn = nn.Sequential(
nn.BatchNorm2d(output_dim),
nn.ReLU(),
nn.Conv2d(output_dim, 1, 1),
)
def forward(self, x1, x2):
out = self.conv_encoder(x1) + self.conv_decoder(x2)
out = self.conv_attn(out)
return out * x2 |