File size: 4,386 Bytes
4e42a1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch.nn as nn
import torch


class ResidualConv(nn.Module):
    def __init__(self, input_dim, output_dim, stride, padding):
        super(ResidualConv, self).__init__()

        self.conv_block = nn.Sequential(
            nn.BatchNorm2d(input_dim),
            nn.ReLU(),
            nn.Conv2d(
                input_dim, output_dim, kernel_size=3, stride=stride, padding=padding
            ),
            nn.BatchNorm2d(output_dim),
            nn.ReLU(),
            nn.Conv2d(output_dim, output_dim, kernel_size=3, padding=1),
        )
        self.conv_skip = nn.Sequential(
            nn.Conv2d(input_dim, output_dim, kernel_size=3, stride=stride, padding=1),
            nn.BatchNorm2d(output_dim),
        )

    def forward(self, x):

        return self.conv_block(x) + self.conv_skip(x)


class Upsample(nn.Module):
    def __init__(self, input_dim, output_dim, kernel, stride):
        super(Upsample, self).__init__()

        self.upsample = nn.ConvTranspose2d(
            input_dim, output_dim, kernel_size=kernel, stride=stride
        )

    def forward(self, x):
        return self.upsample(x)


class Squeeze_Excite_Block(nn.Module):
    def __init__(self, channel, reduction=16):
        super(Squeeze_Excite_Block, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid(),
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y.expand_as(x)


class ASPP(nn.Module):
    def __init__(self, in_dims, out_dims, rate=[6, 12, 18]):
        super(ASPP, self).__init__()

        self.aspp_block1 = nn.Sequential(
            nn.Conv2d(
                in_dims, out_dims, 3, stride=1, padding=rate[0], dilation=rate[0]
            ),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(out_dims),
        )
        self.aspp_block2 = nn.Sequential(
            nn.Conv2d(
                in_dims, out_dims, 3, stride=1, padding=rate[1], dilation=rate[1]
            ),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(out_dims),
        )
        self.aspp_block3 = nn.Sequential(
            nn.Conv2d(
                in_dims, out_dims, 3, stride=1, padding=rate[2], dilation=rate[2]
            ),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(out_dims),
        )

        self.output = nn.Conv2d(len(rate) * out_dims, out_dims, 1)
        self._init_weights()

    def forward(self, x):
        x1 = self.aspp_block1(x)
        x2 = self.aspp_block2(x)
        x3 = self.aspp_block3(x)
        out = torch.cat([x1, x2, x3], dim=1)
        return self.output(out)

    def _init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()


class Upsample_(nn.Module):
    def __init__(self, scale=2):
        super(Upsample_, self).__init__()

        self.upsample = nn.Upsample(mode="bilinear", scale_factor=scale)

    def forward(self, x):
        return self.upsample(x)


class AttentionBlock(nn.Module):
    def __init__(self, input_encoder, input_decoder, output_dim):
        super(AttentionBlock, self).__init__()

        self.conv_encoder = nn.Sequential(
            nn.BatchNorm2d(input_encoder),
            nn.ReLU(),
            nn.Conv2d(input_encoder, output_dim, 3, padding=1),
            nn.MaxPool2d(2, 2),
        )

        self.conv_decoder = nn.Sequential(
            nn.BatchNorm2d(input_decoder),
            nn.ReLU(),
            nn.Conv2d(input_decoder, output_dim, 3, padding=1),
        )

        self.conv_attn = nn.Sequential(
            nn.BatchNorm2d(output_dim),
            nn.ReLU(),
            nn.Conv2d(output_dim, 1, 1),
        )

    def forward(self, x1, x2):
        out = self.conv_encoder(x1) + self.conv_decoder(x2)
        out = self.conv_attn(out)
        return out * x2