MOFA-Video-Hybrid / models /softsplat.py
MyNiuuu's picture
init
4e42a1b
raw
history blame
23.2 kB
#!/usr/bin/env python
import collections
import cupy
import os
import re
import torch
import typing
##########################################################
objCudacache = {}
def cuda_int32(intIn:int):
return cupy.int32(intIn)
# end
def cuda_float32(fltIn:float):
return cupy.float32(fltIn)
# end
def cuda_kernel(strFunction:str, strKernel:str, objVariables:typing.Dict):
if 'device' not in objCudacache:
objCudacache['device'] = torch.cuda.get_device_name()
# end
strKey = strFunction
for strVariable in objVariables:
objValue = objVariables[strVariable]
strKey += strVariable
if objValue is None:
continue
elif type(objValue) == int:
strKey += str(objValue)
elif type(objValue) == float:
strKey += str(objValue)
elif type(objValue) == bool:
strKey += str(objValue)
elif type(objValue) == str:
strKey += objValue
elif type(objValue) == torch.Tensor:
strKey += str(objValue.dtype)
strKey += str(objValue.shape)
strKey += str(objValue.stride())
elif True:
print(strVariable, type(objValue))
assert(False)
# end
# end
strKey += objCudacache['device']
if strKey not in objCudacache:
for strVariable in objVariables:
objValue = objVariables[strVariable]
if objValue is None:
continue
elif type(objValue) == int:
strKernel = strKernel.replace('{{' + strVariable + '}}', str(objValue))
elif type(objValue) == float:
strKernel = strKernel.replace('{{' + strVariable + '}}', str(objValue))
elif type(objValue) == bool:
strKernel = strKernel.replace('{{' + strVariable + '}}', str(objValue))
elif type(objValue) == str:
strKernel = strKernel.replace('{{' + strVariable + '}}', objValue)
elif type(objValue) == torch.Tensor and objValue.dtype == torch.uint8:
strKernel = strKernel.replace('{{type}}', 'unsigned char')
elif type(objValue) == torch.Tensor and objValue.dtype == torch.float16:
strKernel = strKernel.replace('{{type}}', 'half')
elif type(objValue) == torch.Tensor and objValue.dtype == torch.float32:
strKernel = strKernel.replace('{{type}}', 'float')
elif type(objValue) == torch.Tensor and objValue.dtype == torch.float64:
strKernel = strKernel.replace('{{type}}', 'double')
elif type(objValue) == torch.Tensor and objValue.dtype == torch.int32:
strKernel = strKernel.replace('{{type}}', 'int')
elif type(objValue) == torch.Tensor and objValue.dtype == torch.int64:
strKernel = strKernel.replace('{{type}}', 'long')
elif type(objValue) == torch.Tensor:
print(strVariable, objValue.dtype)
assert(False)
elif True:
print(strVariable, type(objValue))
assert(False)
# end
# end
while True:
objMatch = re.search('(SIZE_)([0-4])(\()([^\)]*)(\))', strKernel)
if objMatch is None:
break
# end
intArg = int(objMatch.group(2))
strTensor = objMatch.group(4)
intSizes = objVariables[strTensor].size()
strKernel = strKernel.replace(objMatch.group(), str(intSizes[intArg] if torch.is_tensor(intSizes[intArg]) == False else intSizes[intArg].item()))
# end
while True:
objMatch = re.search('(OFFSET_)([0-4])(\()', strKernel)
if objMatch is None:
break
# end
intStart = objMatch.span()[1]
intStop = objMatch.span()[1]
intParentheses = 1
while True:
intParentheses += 1 if strKernel[intStop] == '(' else 0
intParentheses -= 1 if strKernel[intStop] == ')' else 0
if intParentheses == 0:
break
# end
intStop += 1
# end
intArgs = int(objMatch.group(2))
strArgs = strKernel[intStart:intStop].split(',')
assert(intArgs == len(strArgs) - 1)
strTensor = strArgs[0]
intStrides = objVariables[strTensor].stride()
strIndex = []
for intArg in range(intArgs):
strIndex.append('((' + strArgs[intArg + 1].replace('{', '(').replace('}', ')').strip() + ')*' + str(intStrides[intArg] if torch.is_tensor(intStrides[intArg]) == False else intStrides[intArg].item()) + ')')
# end
strKernel = strKernel.replace('OFFSET_' + str(intArgs) + '(' + strKernel[intStart:intStop] + ')', '(' + str.join('+', strIndex) + ')')
# end
while True:
objMatch = re.search('(VALUE_)([0-4])(\()', strKernel)
if objMatch is None:
break
# end
intStart = objMatch.span()[1]
intStop = objMatch.span()[1]
intParentheses = 1
while True:
intParentheses += 1 if strKernel[intStop] == '(' else 0
intParentheses -= 1 if strKernel[intStop] == ')' else 0
if intParentheses == 0:
break
# end
intStop += 1
# end
intArgs = int(objMatch.group(2))
strArgs = strKernel[intStart:intStop].split(',')
assert(intArgs == len(strArgs) - 1)
strTensor = strArgs[0]
intStrides = objVariables[strTensor].stride()
strIndex = []
for intArg in range(intArgs):
strIndex.append('((' + strArgs[intArg + 1].replace('{', '(').replace('}', ')').strip() + ')*' + str(intStrides[intArg] if torch.is_tensor(intStrides[intArg]) == False else intStrides[intArg].item()) + ')')
# end
strKernel = strKernel.replace('VALUE_' + str(intArgs) + '(' + strKernel[intStart:intStop] + ')', strTensor + '[' + str.join('+', strIndex) + ']')
# end
objCudacache[strKey] = {
'strFunction': strFunction,
'strKernel': strKernel
}
# end
return strKey
# end
@cupy.memoize(for_each_device=True)
def cuda_launch(strKey:str):
if 'CUDA_HOME' not in os.environ:
os.environ['CUDA_HOME'] = cupy.cuda.get_cuda_path()
# end
return cupy.cuda.compile_with_cache(objCudacache[strKey]['strKernel'], tuple(['-I ' + os.environ['CUDA_HOME'], '-I ' + os.environ['CUDA_HOME'] + '/include'])).get_function(objCudacache[strKey]['strFunction'])
# end
##########################################################
def softsplat(tenIn:torch.Tensor, tenFlow:torch.Tensor, tenMetric:torch.Tensor, strMode:str):
assert(strMode.split('-')[0] in ['sum', 'avg', 'linear', 'soft'])
if strMode == 'sum': assert(tenMetric is None)
if strMode == 'avg': assert(tenMetric is None)
if strMode.split('-')[0] == 'linear': assert(tenMetric is not None)
if strMode.split('-')[0] == 'soft': assert(tenMetric is not None)
if strMode == 'avg':
tenIn = torch.cat([tenIn, tenIn.new_ones([tenIn.shape[0], 1, tenIn.shape[2], tenIn.shape[3]])], 1)
elif strMode.split('-')[0] == 'linear':
tenIn = torch.cat([tenIn * tenMetric, tenMetric], 1)
elif strMode.split('-')[0] == 'soft':
tenIn = torch.cat([tenIn * tenMetric.exp(), tenMetric.exp()], 1)
# end
tenOut = softsplat_func.apply(tenIn, tenFlow)
if strMode.split('-')[0] in ['avg', 'linear', 'soft']:
tenNormalize = tenOut[:, -1:, :, :]
if len(strMode.split('-')) == 1:
tenNormalize = tenNormalize + 0.0000001
elif strMode.split('-')[1] == 'addeps':
tenNormalize = tenNormalize + 0.0000001
elif strMode.split('-')[1] == 'zeroeps':
tenNormalize[tenNormalize == 0.0] = 1.0
elif strMode.split('-')[1] == 'clipeps':
tenNormalize = tenNormalize.clip(0.0000001, None)
# end
tenOut = tenOut[:, :-1, :, :] / tenNormalize
# end
return tenOut
# end
class softsplat_func(torch.autograd.Function):
@staticmethod
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
def forward(self, tenIn, tenFlow):
tenOut = tenIn.new_zeros([tenIn.shape[0], tenIn.shape[1], tenIn.shape[2], tenIn.shape[3]])
if tenIn.is_cuda == True:
cuda_launch(cuda_kernel('softsplat_out', '''
extern "C" __global__ void __launch_bounds__(512) softsplat_out(
const int n,
const {{type}}* __restrict__ tenIn,
const {{type}}* __restrict__ tenFlow,
{{type}}* __restrict__ tenOut
) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) {
const int intN = ( intIndex / SIZE_3(tenOut) / SIZE_2(tenOut) / SIZE_1(tenOut) ) % SIZE_0(tenOut);
const int intC = ( intIndex / SIZE_3(tenOut) / SIZE_2(tenOut) ) % SIZE_1(tenOut);
const int intY = ( intIndex / SIZE_3(tenOut) ) % SIZE_2(tenOut);
const int intX = ( intIndex ) % SIZE_3(tenOut);
assert(SIZE_1(tenFlow) == 2);
{{type}} fltX = ({{type}}) (intX) + VALUE_4(tenFlow, intN, 0, intY, intX);
{{type}} fltY = ({{type}}) (intY) + VALUE_4(tenFlow, intN, 1, intY, intX);
if (isfinite(fltX) == false) { return; }
if (isfinite(fltY) == false) { return; }
{{type}} fltIn = VALUE_4(tenIn, intN, intC, intY, intX);
int intNorthwestX = (int) (floor(fltX));
int intNorthwestY = (int) (floor(fltY));
int intNortheastX = intNorthwestX + 1;
int intNortheastY = intNorthwestY;
int intSouthwestX = intNorthwestX;
int intSouthwestY = intNorthwestY + 1;
int intSoutheastX = intNorthwestX + 1;
int intSoutheastY = intNorthwestY + 1;
{{type}} fltNorthwest = (({{type}}) (intSoutheastX) - fltX) * (({{type}}) (intSoutheastY) - fltY);
{{type}} fltNortheast = (fltX - ({{type}}) (intSouthwestX)) * (({{type}}) (intSouthwestY) - fltY);
{{type}} fltSouthwest = (({{type}}) (intNortheastX) - fltX) * (fltY - ({{type}}) (intNortheastY));
{{type}} fltSoutheast = (fltX - ({{type}}) (intNorthwestX)) * (fltY - ({{type}}) (intNorthwestY));
if ((intNorthwestX >= 0) && (intNorthwestX < SIZE_3(tenOut)) && (intNorthwestY >= 0) && (intNorthwestY < SIZE_2(tenOut))) {
atomicAdd(&tenOut[OFFSET_4(tenOut, intN, intC, intNorthwestY, intNorthwestX)], fltIn * fltNorthwest);
}
if ((intNortheastX >= 0) && (intNortheastX < SIZE_3(tenOut)) && (intNortheastY >= 0) && (intNortheastY < SIZE_2(tenOut))) {
atomicAdd(&tenOut[OFFSET_4(tenOut, intN, intC, intNortheastY, intNortheastX)], fltIn * fltNortheast);
}
if ((intSouthwestX >= 0) && (intSouthwestX < SIZE_3(tenOut)) && (intSouthwestY >= 0) && (intSouthwestY < SIZE_2(tenOut))) {
atomicAdd(&tenOut[OFFSET_4(tenOut, intN, intC, intSouthwestY, intSouthwestX)], fltIn * fltSouthwest);
}
if ((intSoutheastX >= 0) && (intSoutheastX < SIZE_3(tenOut)) && (intSoutheastY >= 0) && (intSoutheastY < SIZE_2(tenOut))) {
atomicAdd(&tenOut[OFFSET_4(tenOut, intN, intC, intSoutheastY, intSoutheastX)], fltIn * fltSoutheast);
}
} }
''', {
'tenIn': tenIn,
'tenFlow': tenFlow,
'tenOut': tenOut
}))(
grid=tuple([int((tenOut.nelement() + 512 - 1) / 512), 1, 1]),
block=tuple([512, 1, 1]),
args=[cuda_int32(tenOut.nelement()), tenIn.data_ptr(), tenFlow.data_ptr(), tenOut.data_ptr()],
stream=collections.namedtuple('Stream', 'ptr')(torch.cuda.current_stream().cuda_stream)
)
elif tenIn.is_cuda != True:
assert(False)
# end
self.save_for_backward(tenIn, tenFlow)
return tenOut
# end
@staticmethod
@torch.cuda.amp.custom_bwd
def backward(self, tenOutgrad):
tenIn, tenFlow = self.saved_tensors
tenOutgrad = tenOutgrad.contiguous(); assert(tenOutgrad.is_cuda == True)
tenIngrad = tenIn.new_zeros([tenIn.shape[0], tenIn.shape[1], tenIn.shape[2], tenIn.shape[3]]) if self.needs_input_grad[0] == True else None
tenFlowgrad = tenFlow.new_zeros([tenFlow.shape[0], tenFlow.shape[1], tenFlow.shape[2], tenFlow.shape[3]]) if self.needs_input_grad[1] == True else None
if tenIngrad is not None:
cuda_launch(cuda_kernel('softsplat_ingrad', '''
extern "C" __global__ void __launch_bounds__(512) softsplat_ingrad(
const int n,
const {{type}}* __restrict__ tenIn,
const {{type}}* __restrict__ tenFlow,
const {{type}}* __restrict__ tenOutgrad,
{{type}}* __restrict__ tenIngrad,
{{type}}* __restrict__ tenFlowgrad
) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) {
const int intN = ( intIndex / SIZE_3(tenIngrad) / SIZE_2(tenIngrad) / SIZE_1(tenIngrad) ) % SIZE_0(tenIngrad);
const int intC = ( intIndex / SIZE_3(tenIngrad) / SIZE_2(tenIngrad) ) % SIZE_1(tenIngrad);
const int intY = ( intIndex / SIZE_3(tenIngrad) ) % SIZE_2(tenIngrad);
const int intX = ( intIndex ) % SIZE_3(tenIngrad);
assert(SIZE_1(tenFlow) == 2);
{{type}} fltIngrad = 0.0f;
{{type}} fltX = ({{type}}) (intX) + VALUE_4(tenFlow, intN, 0, intY, intX);
{{type}} fltY = ({{type}}) (intY) + VALUE_4(tenFlow, intN, 1, intY, intX);
if (isfinite(fltX) == false) { return; }
if (isfinite(fltY) == false) { return; }
int intNorthwestX = (int) (floor(fltX));
int intNorthwestY = (int) (floor(fltY));
int intNortheastX = intNorthwestX + 1;
int intNortheastY = intNorthwestY;
int intSouthwestX = intNorthwestX;
int intSouthwestY = intNorthwestY + 1;
int intSoutheastX = intNorthwestX + 1;
int intSoutheastY = intNorthwestY + 1;
{{type}} fltNorthwest = (({{type}}) (intSoutheastX) - fltX) * (({{type}}) (intSoutheastY) - fltY);
{{type}} fltNortheast = (fltX - ({{type}}) (intSouthwestX)) * (({{type}}) (intSouthwestY) - fltY);
{{type}} fltSouthwest = (({{type}}) (intNortheastX) - fltX) * (fltY - ({{type}}) (intNortheastY));
{{type}} fltSoutheast = (fltX - ({{type}}) (intNorthwestX)) * (fltY - ({{type}}) (intNorthwestY));
if ((intNorthwestX >= 0) && (intNorthwestX < SIZE_3(tenOutgrad)) && (intNorthwestY >= 0) && (intNorthwestY < SIZE_2(tenOutgrad))) {
fltIngrad += VALUE_4(tenOutgrad, intN, intC, intNorthwestY, intNorthwestX) * fltNorthwest;
}
if ((intNortheastX >= 0) && (intNortheastX < SIZE_3(tenOutgrad)) && (intNortheastY >= 0) && (intNortheastY < SIZE_2(tenOutgrad))) {
fltIngrad += VALUE_4(tenOutgrad, intN, intC, intNortheastY, intNortheastX) * fltNortheast;
}
if ((intSouthwestX >= 0) && (intSouthwestX < SIZE_3(tenOutgrad)) && (intSouthwestY >= 0) && (intSouthwestY < SIZE_2(tenOutgrad))) {
fltIngrad += VALUE_4(tenOutgrad, intN, intC, intSouthwestY, intSouthwestX) * fltSouthwest;
}
if ((intSoutheastX >= 0) && (intSoutheastX < SIZE_3(tenOutgrad)) && (intSoutheastY >= 0) && (intSoutheastY < SIZE_2(tenOutgrad))) {
fltIngrad += VALUE_4(tenOutgrad, intN, intC, intSoutheastY, intSoutheastX) * fltSoutheast;
}
tenIngrad[intIndex] = fltIngrad;
} }
''', {
'tenIn': tenIn,
'tenFlow': tenFlow,
'tenOutgrad': tenOutgrad,
'tenIngrad': tenIngrad,
'tenFlowgrad': tenFlowgrad
}))(
grid=tuple([int((tenIngrad.nelement() + 512 - 1) / 512), 1, 1]),
block=tuple([512, 1, 1]),
args=[cuda_int32(tenIngrad.nelement()), tenIn.data_ptr(), tenFlow.data_ptr(), tenOutgrad.data_ptr(), tenIngrad.data_ptr(), None],
stream=collections.namedtuple('Stream', 'ptr')(torch.cuda.current_stream().cuda_stream)
)
# end
if tenFlowgrad is not None:
cuda_launch(cuda_kernel('softsplat_flowgrad', '''
extern "C" __global__ void __launch_bounds__(512) softsplat_flowgrad(
const int n,
const {{type}}* __restrict__ tenIn,
const {{type}}* __restrict__ tenFlow,
const {{type}}* __restrict__ tenOutgrad,
{{type}}* __restrict__ tenIngrad,
{{type}}* __restrict__ tenFlowgrad
) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) {
const int intN = ( intIndex / SIZE_3(tenFlowgrad) / SIZE_2(tenFlowgrad) / SIZE_1(tenFlowgrad) ) % SIZE_0(tenFlowgrad);
const int intC = ( intIndex / SIZE_3(tenFlowgrad) / SIZE_2(tenFlowgrad) ) % SIZE_1(tenFlowgrad);
const int intY = ( intIndex / SIZE_3(tenFlowgrad) ) % SIZE_2(tenFlowgrad);
const int intX = ( intIndex ) % SIZE_3(tenFlowgrad);
assert(SIZE_1(tenFlow) == 2);
{{type}} fltFlowgrad = 0.0f;
{{type}} fltX = ({{type}}) (intX) + VALUE_4(tenFlow, intN, 0, intY, intX);
{{type}} fltY = ({{type}}) (intY) + VALUE_4(tenFlow, intN, 1, intY, intX);
if (isfinite(fltX) == false) { return; }
if (isfinite(fltY) == false) { return; }
int intNorthwestX = (int) (floor(fltX));
int intNorthwestY = (int) (floor(fltY));
int intNortheastX = intNorthwestX + 1;
int intNortheastY = intNorthwestY;
int intSouthwestX = intNorthwestX;
int intSouthwestY = intNorthwestY + 1;
int intSoutheastX = intNorthwestX + 1;
int intSoutheastY = intNorthwestY + 1;
{{type}} fltNorthwest = 0.0f;
{{type}} fltNortheast = 0.0f;
{{type}} fltSouthwest = 0.0f;
{{type}} fltSoutheast = 0.0f;
if (intC == 0) {
fltNorthwest = (({{type}}) (-1.0f)) * (({{type}}) (intSoutheastY) - fltY);
fltNortheast = (({{type}}) (+1.0f)) * (({{type}}) (intSouthwestY) - fltY);
fltSouthwest = (({{type}}) (-1.0f)) * (fltY - ({{type}}) (intNortheastY));
fltSoutheast = (({{type}}) (+1.0f)) * (fltY - ({{type}}) (intNorthwestY));
} else if (intC == 1) {
fltNorthwest = (({{type}}) (intSoutheastX) - fltX) * (({{type}}) (-1.0f));
fltNortheast = (fltX - ({{type}}) (intSouthwestX)) * (({{type}}) (-1.0f));
fltSouthwest = (({{type}}) (intNortheastX) - fltX) * (({{type}}) (+1.0f));
fltSoutheast = (fltX - ({{type}}) (intNorthwestX)) * (({{type}}) (+1.0f));
}
for (int intChannel = 0; intChannel < SIZE_1(tenOutgrad); intChannel += 1) {
{{type}} fltIn = VALUE_4(tenIn, intN, intChannel, intY, intX);
if ((intNorthwestX >= 0) && (intNorthwestX < SIZE_3(tenOutgrad)) && (intNorthwestY >= 0) && (intNorthwestY < SIZE_2(tenOutgrad))) {
fltFlowgrad += VALUE_4(tenOutgrad, intN, intChannel, intNorthwestY, intNorthwestX) * fltIn * fltNorthwest;
}
if ((intNortheastX >= 0) && (intNortheastX < SIZE_3(tenOutgrad)) && (intNortheastY >= 0) && (intNortheastY < SIZE_2(tenOutgrad))) {
fltFlowgrad += VALUE_4(tenOutgrad, intN, intChannel, intNortheastY, intNortheastX) * fltIn * fltNortheast;
}
if ((intSouthwestX >= 0) && (intSouthwestX < SIZE_3(tenOutgrad)) && (intSouthwestY >= 0) && (intSouthwestY < SIZE_2(tenOutgrad))) {
fltFlowgrad += VALUE_4(tenOutgrad, intN, intChannel, intSouthwestY, intSouthwestX) * fltIn * fltSouthwest;
}
if ((intSoutheastX >= 0) && (intSoutheastX < SIZE_3(tenOutgrad)) && (intSoutheastY >= 0) && (intSoutheastY < SIZE_2(tenOutgrad))) {
fltFlowgrad += VALUE_4(tenOutgrad, intN, intChannel, intSoutheastY, intSoutheastX) * fltIn * fltSoutheast;
}
}
tenFlowgrad[intIndex] = fltFlowgrad;
} }
''', {
'tenIn': tenIn,
'tenFlow': tenFlow,
'tenOutgrad': tenOutgrad,
'tenIngrad': tenIngrad,
'tenFlowgrad': tenFlowgrad
}))(
grid=tuple([int((tenFlowgrad.nelement() + 512 - 1) / 512), 1, 1]),
block=tuple([512, 1, 1]),
args=[cuda_int32(tenFlowgrad.nelement()), tenIn.data_ptr(), tenFlow.data_ptr(), tenOutgrad.data_ptr(), None, tenFlowgrad.data_ptr()],
stream=collections.namedtuple('Stream', 'ptr')(torch.cuda.current_stream().cuda_stream)
)
# end
return tenIngrad, tenFlowgrad
# end
# end