# check the sync of 3dmm feature and the audio import shutil import cv2 import numpy as np from src.face3d.models.bfm import ParametricFaceModel from src.face3d.models.facerecon_model import FaceReconModel import torch import subprocess, platform import scipy.io as scio from tqdm import tqdm def draw_landmarks(image, landmarks): for i, point in enumerate(landmarks): cv2.circle(image, (int(point[0]), int(point[1])), 2, (0, 255, 0), -1) cv2.putText(image, str(i), (int(point[0]), int(point[1])), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) return image # draft def gen_composed_video(args, device, first_frame_coeff, coeff_path, audio_path, save_path, save_lmk_path, crop_info, extended_crop = False): coeff_first = scio.loadmat(first_frame_coeff)['full_3dmm'] info = scio.loadmat(first_frame_coeff)['trans_params'][0] print(info) coeff_pred = scio.loadmat(coeff_path)['coeff_3dmm'] coeff_full = np.repeat(coeff_first, coeff_pred.shape[0], axis=0) # 257 coeff_full[:, 80:144] = coeff_pred[:, 0:64] coeff_full[:, 224:227] = coeff_pred[:, 64:67] # 3 dim translation coeff_full[:, 254:] = coeff_pred[:, 67:] # 3 dim translation if len(crop_info) != 3: print("you didn't crop the image") return else: r_w, r_h = crop_info[0] clx, cly, crx, cry = crop_info[1] lx, ly, rx, ry = crop_info[2] lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) # oy1, oy2, ox1, ox2 = cly+ly, cly+ry, clx+lx, clx+rx # oy1, oy2, ox1, ox2 = cly+ly, cly+ry, clx+lx, clx+rx if extended_crop: oy1, oy2, ox1, ox2 = cly, cry, clx, crx else: oy1, oy2, ox1, ox2 = cly+ly, cly+ry, clx+lx, clx+rx tmp_video_path = '/tmp/face3dtmp.mp4' facemodel = FaceReconModel(args) im0 = cv2.imread(args.source_image) video = cv2.VideoWriter(tmp_video_path, cv2.VideoWriter_fourcc(*'mp4v'), 25, (224, 224)) # since we resize the video, we first need to resize the landmark to the cropped size resolution # then, we need to add it back to the original video x_scale, y_scale = (ox2 - ox1)/256 , (oy2 - oy1)/256 W, H = im0.shape[0], im0.shape[1] _, _, s, _, _, orig_left, orig_up, orig_crop_size =(info[0], info[1], info[2], info[3], info[4], info[5], info[6], info[7]) orig_left, orig_up, orig_crop_size = [int(x) for x in (orig_left, orig_up, orig_crop_size)] landmark_scale = np.array([[x_scale, y_scale]]) landmark_shift = np.array([[orig_left, orig_up]]) landmark_shift2 = np.array([[ox1, oy1]]) landmarks = [] print(orig_up, orig_left, orig_crop_size, s) for k in tqdm(range(coeff_pred.shape[0]), 'face3d rendering:'): cur_coeff_full = torch.tensor(coeff_full[k:k+1], device=device) facemodel.forward(cur_coeff_full, device) predicted_landmark = facemodel.pred_lm # TODO. predicted_landmark = predicted_landmark.cpu().numpy().squeeze() predicted_landmark[:, 1] = 224 - predicted_landmark[:, 1] predicted_landmark = ((predicted_landmark + landmark_shift) / s[0] * landmark_scale) + landmark_shift2 landmarks.append(predicted_landmark) rendered_img = facemodel.pred_face rendered_img = 255. * rendered_img.cpu().numpy().squeeze().transpose(1,2,0) out_img = rendered_img[:, :, :3].astype(np.uint8) video.write(np.uint8(out_img[:,:,::-1])) video.release() # visualize landmarks video = cv2.VideoWriter(save_lmk_path, cv2.VideoWriter_fourcc(*'mp4v'), 25, (im0.shape[0], im0.shape[1])) for k in tqdm(range(len(landmarks)), 'face3d vis:'): # im = draw_landmarks(im0.copy(), landmarks[k]) im = draw_landmarks(np.uint8(np.ones_like(im0)*255), landmarks[k]) video.write(im) video.release() shutil.copyfile(args.source_image, save_lmk_path.replace('.mp4', '.png')) np.save(save_lmk_path.replace('.mp4', '.npy'), landmarks) command = 'ffmpeg -v quiet -y -i {} -i {} -strict -2 -q:v 1 {}'.format(audio_path, tmp_video_path, save_path) subprocess.call(command, shell=platform.system() != 'Windows')