import os import cv2 import time import glob import argparse import scipy import numpy as np from PIL import Image import torch from tqdm import tqdm from itertools import cycle from src.face3d.extract_kp_videos_safe import KeypointExtractor from facexlib.alignment import landmark_98_to_68 import numpy as np from PIL import Image class Preprocesser: def __init__(self, device='cuda'): self.predictor = KeypointExtractor(device) def get_landmark(self, img_np): """get landmark with dlib :return: np.array shape=(68, 2) """ with torch.no_grad(): dets = self.predictor.det_net.detect_faces(img_np, 0.97) if len(dets) == 0: return None det = dets[0] img = img_np[int(det[1]):int(det[3]), int(det[0]):int(det[2]), :] lm = landmark_98_to_68(self.predictor.detector.get_landmarks(img)) # [0] #### keypoints to the original location lm[:,0] += int(det[0]) lm[:,1] += int(det[1]) return lm def align_face(self, img, lm, output_size=1024): """ :param filepath: str :return: PIL Image """ lm_chin = lm[0: 17] # left-right lm_eyebrow_left = lm[17: 22] # left-right lm_eyebrow_right = lm[22: 27] # left-right lm_nose = lm[27: 31] # top-down lm_nostrils = lm[31: 36] # top-down lm_eye_left = lm[36: 42] # left-clockwise lm_eye_right = lm[42: 48] # left-clockwise lm_mouth_outer = lm[48: 60] # left-clockwise lm_mouth_inner = lm[60: 68] # left-clockwise # Calculate auxiliary vectors. eye_left = np.mean(lm_eye_left, axis=0) eye_right = np.mean(lm_eye_right, axis=0) eye_avg = (eye_left + eye_right) * 0.5 eye_to_eye = eye_right - eye_left mouth_left = lm_mouth_outer[0] mouth_right = lm_mouth_outer[6] mouth_avg = (mouth_left + mouth_right) * 0.5 eye_to_mouth = mouth_avg - eye_avg # Choose oriented crop rectangle. x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] # Addition of binocular difference and double mouth difference x /= np.hypot(*x) # hypot函数计算直角三角形的斜边长,用斜边长对三角形两条直边做归一化 x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) # 双眼差和眼嘴差,选较大的作为基准尺度 y = np.flipud(x) * [-1, 1] c = eye_avg + eye_to_mouth * 0.1 quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) # 定义四边形,以面部基准位置为中心上下左右平移得到四个顶点 qsize = np.hypot(*x) * 2 # 定义四边形的大小(边长),为基准尺度的2倍 # Shrink. # 如果计算出的四边形太大了,就按比例缩小它 shrink = int(np.floor(qsize / output_size * 0.5)) if shrink > 1: rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) img = img.resize(rsize, Image.ANTIALIAS) quad /= shrink qsize /= shrink else: rsize = (int(np.rint(float(img.size[0]))), int(np.rint(float(img.size[1])))) # Crop. border = max(int(np.rint(qsize * 0.1)), 3) crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1])) if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: # img = img.crop(crop) quad -= crop[0:2] # Pad. pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0)) # if enable_padding and max(pad) > border - 4: # pad = np.maximum(pad, int(np.rint(qsize * 0.3))) # img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') # h, w, _ = img.shape # y, x, _ = np.ogrid[:h, :w, :1] # mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), # 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) # blur = qsize * 0.02 # img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) # img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) # img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') # quad += pad[:2] # Transform. quad = (quad + 0.5).flatten() lx = max(min(quad[0], quad[2]), 0) ly = max(min(quad[1], quad[7]), 0) rx = min(max(quad[4], quad[6]), img.size[0]) ry = min(max(quad[3], quad[5]), img.size[0]) # Save aligned image. return rsize, crop, [lx, ly, rx, ry] def crop(self, img_np_list, still=False, xsize=512): # first frame for all video # print(img_np_list) img_np = img_np_list[0] lm = self.get_landmark(img_np) if lm is None: raise 'can not detect the landmark from source image' rsize, crop, quad = self.align_face(img=Image.fromarray(img_np), lm=lm, output_size=xsize) clx, cly, crx, cry = crop lx, ly, rx, ry = quad lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) for _i in range(len(img_np_list)): _inp = img_np_list[_i] _inp = cv2.resize(_inp, (rsize[0], rsize[1])) _inp = _inp[cly:cry, clx:crx] if not still: _inp = _inp[ly:ry, lx:rx] img_np_list[_i] = _inp return img_np_list, crop, quad