|
from dataclasses import dataclass |
|
from typing import Dict, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.loaders import UNet2DConditionLoadersMixin |
|
from diffusers.utils import BaseOutput, logging |
|
from diffusers.models.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor |
|
from diffusers.models.embeddings import TimestepEmbedding, Timesteps |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block, get_up_block |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class UNetSpatioTemporalConditionOutput(BaseOutput): |
|
""" |
|
The output of [`UNetSpatioTemporalConditionModel`]. |
|
|
|
Args: |
|
sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): |
|
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. |
|
""" |
|
|
|
sample: torch.FloatTensor = None |
|
|
|
|
|
class UNetSpatioTemporalConditionControlNetModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): |
|
r""" |
|
A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and returns a sample |
|
shaped output. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented |
|
for all models (such as downloading or saving). |
|
|
|
Parameters: |
|
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): |
|
Height and width of input/output sample. |
|
in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample. |
|
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`): |
|
The tuple of downsample blocks to use. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`): |
|
The tuple of upsample blocks to use. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): |
|
The tuple of output channels for each block. |
|
addition_time_embed_dim: (`int`, defaults to 256): |
|
Dimension to to encode the additional time ids. |
|
projection_class_embeddings_input_dim (`int`, defaults to 768): |
|
The dimension of the projection of encoded `added_time_ids`. |
|
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. |
|
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): |
|
The dimension of the cross attention features. |
|
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1): |
|
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for |
|
[`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`], [`~models.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`], |
|
[`~models.unet_3d_blocks.UNetMidBlockSpatioTemporal`]. |
|
num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`): |
|
The number of attention heads. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sample_size: Optional[int] = None, |
|
in_channels: int = 8, |
|
out_channels: int = 4, |
|
down_block_types: Tuple[str] = ( |
|
"CrossAttnDownBlockSpatioTemporal", |
|
"CrossAttnDownBlockSpatioTemporal", |
|
"CrossAttnDownBlockSpatioTemporal", |
|
"DownBlockSpatioTemporal", |
|
), |
|
up_block_types: Tuple[str] = ( |
|
"UpBlockSpatioTemporal", |
|
"CrossAttnUpBlockSpatioTemporal", |
|
"CrossAttnUpBlockSpatioTemporal", |
|
"CrossAttnUpBlockSpatioTemporal", |
|
), |
|
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), |
|
addition_time_embed_dim: int = 256, |
|
projection_class_embeddings_input_dim: int = 768, |
|
layers_per_block: Union[int, Tuple[int]] = 2, |
|
cross_attention_dim: Union[int, Tuple[int]] = 1024, |
|
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, |
|
num_attention_heads: Union[int, Tuple[int]] = (5, 10, 10, 20), |
|
num_frames: int = 25, |
|
): |
|
super().__init__() |
|
|
|
self.sample_size = sample_size |
|
|
|
|
|
if len(down_block_types) != len(up_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." |
|
) |
|
|
|
if len(block_out_channels) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
|
|
self.conv_in = nn.Conv2d( |
|
in_channels, |
|
block_out_channels[0], |
|
kernel_size=3, |
|
padding=1, |
|
) |
|
|
|
|
|
time_embed_dim = block_out_channels[0] * 4 |
|
|
|
self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0) |
|
timestep_input_dim = block_out_channels[0] |
|
|
|
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) |
|
|
|
self.add_time_proj = Timesteps(addition_time_embed_dim, True, downscale_freq_shift=0) |
|
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) |
|
|
|
self.down_blocks = nn.ModuleList([]) |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
if isinstance(num_attention_heads, int): |
|
num_attention_heads = (num_attention_heads,) * len(down_block_types) |
|
|
|
if isinstance(cross_attention_dim, int): |
|
cross_attention_dim = (cross_attention_dim,) * len(down_block_types) |
|
|
|
if isinstance(layers_per_block, int): |
|
layers_per_block = [layers_per_block] * len(down_block_types) |
|
|
|
if isinstance(transformer_layers_per_block, int): |
|
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) |
|
|
|
blocks_time_embed_dim = time_embed_dim |
|
|
|
|
|
output_channel = block_out_channels[0] |
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
down_block = get_down_block( |
|
down_block_type, |
|
num_layers=layers_per_block[i], |
|
transformer_layers_per_block=transformer_layers_per_block[i], |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
temb_channels=blocks_time_embed_dim, |
|
add_downsample=not is_final_block, |
|
resnet_eps=1e-5, |
|
cross_attention_dim=cross_attention_dim[i], |
|
num_attention_heads=num_attention_heads[i], |
|
resnet_act_fn="silu", |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
|
|
self.mid_block = UNetMidBlockSpatioTemporal( |
|
block_out_channels[-1], |
|
temb_channels=blocks_time_embed_dim, |
|
transformer_layers_per_block=transformer_layers_per_block[-1], |
|
cross_attention_dim=cross_attention_dim[-1], |
|
num_attention_heads=num_attention_heads[-1], |
|
) |
|
|
|
|
|
self.num_upsamplers = 0 |
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
reversed_num_attention_heads = list(reversed(num_attention_heads)) |
|
reversed_layers_per_block = list(reversed(layers_per_block)) |
|
reversed_cross_attention_dim = list(reversed(cross_attention_dim)) |
|
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) |
|
|
|
output_channel = reversed_block_out_channels[0] |
|
for i, up_block_type in enumerate(up_block_types): |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] |
|
|
|
|
|
if not is_final_block: |
|
add_upsample = True |
|
self.num_upsamplers += 1 |
|
else: |
|
add_upsample = False |
|
|
|
up_block = get_up_block( |
|
up_block_type, |
|
num_layers=reversed_layers_per_block[i] + 1, |
|
transformer_layers_per_block=reversed_transformer_layers_per_block[i], |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=blocks_time_embed_dim, |
|
add_upsample=add_upsample, |
|
resnet_eps=1e-5, |
|
resolution_idx=i, |
|
cross_attention_dim=reversed_cross_attention_dim[i], |
|
num_attention_heads=reversed_num_attention_heads[i], |
|
resnet_act_fn="silu", |
|
) |
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
|
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5) |
|
self.conv_act = nn.SiLU() |
|
|
|
self.conv_out = nn.Conv2d( |
|
block_out_channels[0], |
|
out_channels, |
|
kernel_size=3, |
|
padding=1, |
|
) |
|
|
|
@property |
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors( |
|
name: str, |
|
module: torch.nn.Module, |
|
processors: Dict[str, AttentionProcessor], |
|
): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
def set_default_attn_processor(self): |
|
""" |
|
Disables custom attention processors and sets the default attention implementation. |
|
""" |
|
if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): |
|
processor = AttnProcessor() |
|
else: |
|
raise ValueError( |
|
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" |
|
) |
|
|
|
self.set_attn_processor(processor) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: |
|
""" |
|
Sets the attention processor to use [feed forward |
|
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). |
|
|
|
Parameters: |
|
chunk_size (`int`, *optional*): |
|
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually |
|
over each tensor of dim=`dim`. |
|
dim (`int`, *optional*, defaults to `0`): |
|
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) |
|
or dim=1 (sequence length). |
|
""" |
|
if dim not in [0, 1]: |
|
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") |
|
|
|
|
|
chunk_size = chunk_size or 1 |
|
|
|
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): |
|
if hasattr(module, "set_chunk_feed_forward"): |
|
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) |
|
|
|
for child in module.children(): |
|
fn_recursive_feed_forward(child, chunk_size, dim) |
|
|
|
for module in self.children(): |
|
fn_recursive_feed_forward(module, chunk_size, dim) |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, |
|
mid_block_additional_residual: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
added_time_ids: torch.Tensor=None, |
|
) -> Union[UNetSpatioTemporalConditionOutput, Tuple]: |
|
r""" |
|
The [`UNetSpatioTemporalConditionModel`] forward method. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): |
|
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`. |
|
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. |
|
encoder_hidden_states (`torch.FloatTensor`): |
|
The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`. |
|
added_time_ids: (`torch.FloatTensor`): |
|
The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal |
|
embeddings and added to the time embeddings. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead of a plain |
|
tuple. |
|
Returns: |
|
[`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`: |
|
If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned, otherwise |
|
a `tuple` is returned where the first element is the sample tensor. |
|
""" |
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
|
|
|
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
|
elif len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
|
|
batch_size, num_frames = sample.shape[:2] |
|
timesteps = timesteps.expand(batch_size) |
|
|
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=sample.dtype) |
|
|
|
emb = self.time_embedding(t_emb) |
|
|
|
time_embeds = self.add_time_proj(added_time_ids.flatten()) |
|
time_embeds = time_embeds.reshape((batch_size, -1)) |
|
time_embeds = time_embeds.to(emb.dtype) |
|
aug_emb = self.add_embedding(time_embeds) |
|
emb = emb + aug_emb |
|
|
|
|
|
|
|
sample = sample.flatten(0, 1) |
|
|
|
|
|
emb = emb.repeat_interleave(num_frames, dim=0) |
|
|
|
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0) |
|
|
|
|
|
sample = self.conv_in(sample) |
|
|
|
image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device) |
|
|
|
down_block_res_samples = (sample,) |
|
for downsample_block in self.down_blocks: |
|
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: |
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
else: |
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
|
|
down_block_res_samples += res_samples |
|
|
|
new_down_block_res_samples = () |
|
|
|
for down_block_res_sample, down_block_additional_residual in zip( |
|
down_block_res_samples, down_block_additional_residuals |
|
): |
|
down_block_res_sample = down_block_res_sample + down_block_additional_residual |
|
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) |
|
|
|
down_block_res_samples = new_down_block_res_samples |
|
|
|
|
|
|
|
sample = self.mid_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
sample = sample + mid_block_additional_residual |
|
|
|
|
|
|
|
for i, upsample_block in enumerate(self.up_blocks): |
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] |
|
|
|
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
encoder_hidden_states=encoder_hidden_states, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
else: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
|
|
sample = sample.reshape(batch_size, num_frames, *sample.shape[1:]) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
|
|
return UNetSpatioTemporalConditionOutput(sample=sample) |
|
|